Tag Archives: protein contacts

CCP4 Study Weekend 2017: From Data to Structure

This year’s CCP4 study weekend focused on providing an overview of the process and pipelines available, to take crystallographic diffraction data from spot intensities right through to structure. Therefore sessions included; processing diffraction data, phasing through molecular replacement and experimental techniques, automated model building and refinement. As well as updates to CCP4 and where is crystallography going to take us in the future?

Surrounding the meeting there was also a session for Macromolecular (MX) crystallography users of Diamond Light Source (DLS), which gave an update on the beamlines, and scientific software, as well as examples of how fragment screening at DLS has been used. The VMXi (Versatile Macromolecular X-tallography in-situ) beamline is being developed to image crystals that are forming in situ crystallisation plates. This should allow for crystallography to be optimized, as crystallization conditions can be screened, and data collected on experiments as they crystallise, especially helpful in cases where crystallisation has routinely led to non-diffracting crystals. VXMm is a micro/nanofocus MX beamline, which is in development, with a focus to get crystallographic from very small crystals (~300nm to 10 micron diameters, with a bias to the smaller size), thereby allowing crystallography of targets that have previously been hard to get sufficient crystals. Other updates included how technology developed for fast solid state data collection on x-ray free electron lasers (XFEL) can be used on synchrotron beamlines.

A slightly more in-depth discussion of two tools presented that were developed for use alongside and within CCP4, which might be of interest more broadly:

ConKit: A python interface for contact prediction tools

Contact prediction for proteins, at its simplest, involves estimating which residues within a certain certain spatial proximity of each other, given the sequence of the protein, or proteins (for complexes and interfaces). Two major types of contact prediction exist:

  • Evolutionary Coupling
  • Supervised machine learning
    • Using ab initio structure prediction tools, without sequence homologues, to predict which contacts exist, but with a much lower accuracy than evolutionary coupling.

fullscreen

ConKit is a python interface (API) for contact prediction tools, consisting of three major modules:

  • Core: A module for constructing hierarchies, thereby storing necessary data such as sequences in a parsable format.
    • Providing common functionality through functions that for example declare a contact as a false positive.
  • Application: Python wrappers for common contact prediction and sequence alignment applications
  • I/O: I/O interface for file reading, writing and conversions.

Contact prediction can be used in the crystallographic structure determination field, during unconventional molecular replacement, using a tool such as AMPLE. Molecular replacement is a computational strategy to solve the phase problem. In the typical case, by using homologous structures to determine an estimate a model of the protein, which best fits the experimental diffraction intensities, and thus estimate the phase. AMPLE utilises ab initio modeling (using Rosetta) to generate a model for the protein, contact prediction can provide input to this ab initio modeling, thereby making it more feasible to generate an appropriate structure, from which to solve the phase problem. Contact prediction can also be used to analyse known and unknown structures, to identify potential functional sites.

For more information: Talk given at CCP4 study weekend (Felix Simkovic), ConKit documentation

ACEDRG: Generating Crystallographic Restraints for Ligands

Small molecule ligands are present in many crystallographic structures, especially in drug development campaigns. Proteins are formed (almost exclusively) from a sequence containing a selection of 20 amino acids, this means there are well known restraints (for example: bond lengths, bond angles, torsion angles and rotamer position) for model building or refinement of amino acids. As ligands can be built from a much wider selection of chemical moieties, they have not previously been restrained as well during MX refinement. Ligands found in PDB depositions can be used as models for the model building/ refinement of ligands in new structures, however there are a limited number of ligands available (~23,000). Furthermore, the resolution of the ligands is limited to the resolution of the macro-molecular structure from which they are extracted.

ACEDRG utilises the crystallorgraphy open database (COD), a library of (>300,000) small molecules usually with atomic resolution data (often at least 0.84 Angstrom), to generate a dictionary of restraints to be used in refining the ligand. To create these restraints ACEDRG utilises the RDkit chemoinformatics package, generating a detailed descriptor of each atom of the ligands in COD. The descriptor utilises properties of each atom including the element name, number of bonds, environment of nearest neighbours, third degree neighbours that are aromatic ring systems. The descriptor, is stored alongside the electron density values from the COD.  When a ACEDRG query is generated, for each atom in the ligand, the atom type is compared to those for which a COD structure is available, the nearest match is then used to generate a series of restraints for the atom.

ACEDRG can take a molecular description (SMILES, SDF MOL, SYBYL MOL2) of your ligand, and generate appropriate restraints for refinement, (atom types, bond lengths and angles, torsion angles, planes and chirality centers) as a mmCIF file. These restraints can be generated for a number of different probable conformations for the ligand, such that it can be refined in these alternate conformations, then the refinement program  can use local scoring criteria to select the ligand conformation that best fits the observed electron density. ACEDRG can accessed through the CCP4i2 interface, and as a command line interface.

Hopefully a useful insight to some of the tools presented at the CCP4 Study weekend. For anyone looking for further information on the CCP4 Study weekend: Agenda, Recording of Sessions, Proceedings from previous years.

Predicted protein contacts: is it the solution to (de novo) protein structure prediction?

So what is this buzz I hear about predicted protein contacts? Is it really the long awaited solution for one of the biggest open problems in biology today? Has protein structure prediction been solved?

Well, first things first. Let me give you a quick introduction to this predicted protein contact business (probably not quick enough for an elevator pitch, but hopefully you are not reading this in an elevator).

Nowadays, the scientific community has become very good at sequencing things (and by things I mean genetic things, like whole genomes of a bunch of different people and organisms). We are so good at it that mountains of sequence data are now available: genes, mRNAs, protein sequences. The question is what do we do with all this data?

Good scientists are coming up with new and creative ideas to extract knowledge from these mountains of data. For instance, one can build multiple sequence alignments using protein sequences for a given protein family. One of the ways in which information can be extracted from these multiple sequence alignments is by identifying extremely conserved columns (think of the alignment as a big matrix). Residues in these conserved positions are good candidates for being functionally important for the proteins in that particular family.

Another interesting thing that can be done is to look for pairs of residues that are mutating in a correlated fashion. In more practical terms, you are ascertaining how correlated is the information between two columns of a multiple sequence alignment; how often a change in one of them is countered by a change in the other. Why would anyone care about that? Simple. There is an assumption that residues that mutate in a correlated fashion are co-evolving. In other words, they share some sort of functional dependence (i.e. spatial proximity) that is under selective pressure.

Ok, that was a lot of hypotheticals, does it work? For many years, it didn’t. There were lots of issues with the way these correlations were computed and one of the biggest problems was to identify (and correct for) transitivity. Transitivity is the idea that you observe a false correlation between residues A and C because residues A,B and residues B,C are mutating in a correlated fashion. AS more powerful statistical methods were developed (borrowing some ideas from mechanical statistics), the transitivity issue has seemingly been solved.

The newest methods that detect co-evolving residues in a multiple sequence alignment are capable of detecting protein contacts with high precision. In this context, a contact is defined as two residues that are close together in a protein structure. How close?  Their C-betas must be 8 Angstroms or less apart. When sufficient sequence information is available (at least 500 sequences in the MSA), the average precision of the predicted contacts can reach 80%.

This is a powerful way of converting sequence information into distance constraints, which can be used for protein structure modelling. If a sufficient number of correct distance constraints is used, we can accurately predict the topology of a protein [1]. Recently, we have also observed great advances in the way that models are refined (that is, refining a model that contains the correct topology to atomic, near-experimental resolution). If you put those two things together, we start to look at a very nice picture.

So what’s the catch? The catch was there. Very subtle. “When sufficient sequence information is available”. Currently, there is an estimate that only 15% of the de novo protein structure prediction cases present sufficient sequence information for the prediction of protein contacts. One potential solution would be to sit and wait for more and more sequences to be obtained. Yet a potential pitfall of sitting and waiting is that there is no guarantee that we will have sufficient sequence information for a large number of protein families, as they may as well present less than 500 members.

Furthermore, scientists are not very good at sitting around and waiting. They need to keep themselves busy. There are many things that the community as whole can invest time on while we wait for more sequences to be generated. For instance, we want to be sure that, for the cases where there is a sufficient number of sequences, that we get the modelling step right (and predict the accurate protein topology). Predicted contacts also show potential as a tool for quality assessment and may prove to be a nice way of ascertaining whether you have confidence that a model with correct topology was created. More than that, model refinement still needs to improve if we want to make sure that we get from the correct topology to near-experimental resolution.

Protein structure prediction is a hard problem and with so much room for improvement, we still have a long way to go. Yet, this predicted contact business is a huge step in the right direction. Maybe, it won’t be long before models generated ab initio are considered as reliable as the ones generated using a template. Who knows what promised the future holds.

References:

[1] Kim DE, Dimaio F, Yu-Ruei Wang R, Song Y, Baker D. One contact for every twelve residues allows robust and accurate topology-level protein structure modeling. Proteins. 2014 Feb;82 Suppl 2:208-18. doi: 10.1002/prot.24374. Epub 2013 Sep 10.