Tag Archives: probability

Chained or Unchained: Markov, Nekrasov and Free Will

A Markov Chain moving between two states A and B. Animation by Devin Soni

Markov chains are simple probabilistic models which model sequences of related events through time. In a Markov chain, events at the present time depend on the previous event in the sequence. The example above shows a model of a dynamical system with two states A and B and the events are either moving between states A and B, or staying put.

More formally, a Markov chain is a model of any sequence of events with the following relationship

P(X_t=x|X_{t-1}=x_{t-1},X_{t-2}=x_{t-2},..,X_1=x_1)=P(X_t|X_{t-1}).

That is, the event that the sequence \{X_t\}_{t} is in state x at time t is conditionally independent of all of its past states given its immediate past. This simple relationship between past and present provides a useful simplifying assumption to model, to a surprising degree of accuracy, many real world systems. These range from air particles diffusing through a room, to the migration patterns of insects, to the evolution of your genome, and even your web browser activity. Given their broad use in describing natural phenomena, it is very curious that Markov first invented the Markov chain to settle a dispute in Mathematical Theology, one in which the atheist Markov was pitted against the devoutly Orthodox Pavel Nekrasov.

Continue reading