Tag Archives: function prediction

Kernel Methods are a Hot Topic in Network Feature Analysis

The kernel trick is a well known method in machine learning for producing a real-valued measure of similarity between data points in any number of settings. Kernel methods for network analysis provide a way of assigning real values to vertices of the graph. These values may correspond to similarity across any number of graphical properties such as the neighbours they share, or more dynamic context, the influence that change in the state of one vertex might have on another.

By using the kernel trick it is possible to approximate the distribution of features on the vertices of a graph in a way that respects the graphical relationships between vertices. Kernel based methods have long been used, for instance in inferring protein function from other proteins within Protein Interaction Networks (PINs).

Continue Reading