Tag Archives: conference

AIRR Community Meeting V – December 2020

We attended the virtual Adaptive Immune Receptor Repertoire (AIRR) Community Meeting in early December. The three day conference is usually held every 18 months and covered a range of research talks, software demonstrations and poster presentations on the latest TCR and BCR (antibody) research. While we missed certain elements that were present at the last AIRR community meeting (namely focaccia), it was a really interesting meeting with technology all running very smoothly.

Given our current research on SARS-CoV-2 antibodies, we particularly enjoyed the work presented by Armita Nourmohammad from the University of Washington on “Dynamics of BCR in Covid”, based on the preprint on medRxiv. The research identified 34 significantly expanded rare clonal lineages shared among patients with SARS-CoV-2, which are potential candidates for covid response. In particular, the analysis includes an assessment of whether an antibody sequence identified in different individuals (known as a shared or public sequence) is likely to be found due to inherent biases in antibody recombination. Shared antibody sequences which are calculated as  unlikely to be shared are potentially a response to a shared exposure such as SARS-CoV2, rather than randomly found in the antibody repertoire. In this way, Nourmohammed and colleagues identified ‘rare’ antibodies which were identified in more individuals than would statistically be expected, and therefore might be worthy of further experimental analysis.

A theme common across a short talk and poster by Hadas Neuman (Bar-Ilan) and a poster by Kenneth Hoehn (Yale), was class-switching dynamics revealed by phylogenetic inference (from IgM to IgA in the human gut in the former, and IgE and IgG4 in a paediatric patient with peanut allergy in the latter). Kenneth Hoehn’s poster also looked at B-cell differentiation during HIV infection – this can all be read about in this preprint. The methods developed in the paper for discrete trait analysis of differentiation, isotype switching and B-cell migration are implemented in the new R package dowser (https://bitbucket.org/kleinstein/dowser) which is part of the Immcantation suite (http://immcantation.org).

It was also really nice to see evidence of the burgeoning use of single-cell sequencing for immune repertoire profiling, with posters by Igor Snapkov (UiO), Indu Khatri (Leiden University Medical Centre), Nick Borcherding (Washington University in St. Louis) all using single-cell technologies, and a talk by Ivelin Georgiev on LIBRA-seq. 

If you missed the conference and have had your interest piqued, some of the conference talks are available at the AIRRC youtube channel.

We look forward to AIRRC6, Dec 7 – 11, 2021!

Sarah and Eve

NeurIPS 2020: Chemistry / Biology papers

Another blog post, another look at accepted papers for a major ML conference. NeurIPS joins the other major machine learning conferences (and others) in moving virtual this year, running from 6th – 12th December 2020. In a continuation of past posts (ICML 2020, NeurIPS 2019), I will highlight several of potential interest to the chem-/bio-informatics communities

The list of accepted papers can be found here, with 1,903 papers accepted out of 9,467 submissions (20% acceptance rate).

In addition to the main conference, there are several workshops highly related to the type of research undertaken in OPIG: Machine Learning in Structural Biology and Machine Learning for Molecules.

The usual caveat: given the large number of papers, these were selected either by “accident” (i.e. I stumbled across them in one way or another) or through a basic search (e.g. Ctrl+f “molecule”). If you find any I have missed, please reach out and I will update accordingly.

Continue reading

Learning from Biased Datasets

Both the beauty and the downfall of learning-based methods is that the data used for training will largely determine the quality of any model or system.

While there have been numerous algorithmic advances in recent years, the most successful applications of machine learning have been in areas where either (i) you can generate your own data in a fully understood environment (e.g. AlphaGo/AlphaZero), or (ii) data is so abundant that you’re essentially training on “everything” (e.g. GPT2/3, CNNs trained on ImageNet).

This covers only a narrow range of applications, with most data not falling into one of these two categories. Unfortunately, when this is true (and even sometimes when you are in one of those rare cases) your data is almost certainly biased – you just may or may not know it.

Continue reading

ICML 2020: Chemistry / Biology papers

ICML is one of the largest machine learning conferences and, like many other conferences this year, is running virtually from 12th – 18th July.

The list of accepted papers can be found here, with 1,088 papers accepted out of 4,990 submissions (22% acceptance rate). Similar to my post on NeurIPS 2019 papers, I will highlight several of potential interest to the chem-/bio-informatics communities. As before, given the large number of papers, these were selected either by “accident” (i.e. I stumbled across them in one way or another) or through a basic search (e.g. Ctrl+f “molecule”).

Continue reading

NeurIPS 2019: Chemistry/Biology papers

NeurIPS is the largest machine learning conference (by number of participants), with over 8,000 in 2017. This year, the conference will be held in Vancouver, Canada from 8th-14th December.

Recently, the list of accepted papers was announced, with 1430 papers accepted. Here, I will highlight several of potential interest to the chem-/bio-informatics communities. Given the large number of papers, these were selected either by “accident” (i.e. I stumbled across them in one way or another) or through a basic search (e.g. Ctrl+f “molecule”).

Continue reading

Trying out some code from the Eighth Joint Sheffield Conference on Chemoinformatics: finding the most common functional groups present in the DSPL library

Last month a bunch of us attended the Sheffield Chemoinformatics Conference. We heard many great presentations and there were many invitations to check out one’s GitHub page. I decided now is the perfect time to try out some code that was shown by one presenter.

Peter Ertl from Novartis presented his work on the The encyclopedia of functional groups. He presented a method that automatically detects functional groups, without the use of a pre-defined list (which is what most other methods use for detecting functional groups). His method involves recursive searching through the molecule to identify groups of atoms that meet certain criteria. He used his method to answer questions such as: how many functional groups are there and what are the most common functional groups found in common synthetic molecules versus bioactive molecules versus natural products. Since I, like many others in the group, are interested in fragment libraries (possibly due to a supervisor in common), I thought I could try it out on one of these.

Continue reading