Writing Papers in OPIG

I’m dedicating this blog post to something I spend a great deal of my time doing – reading the manuscripts that members of OPIG produce.

As every member of OPIG knows we often go through a very large number of drafts as I inexpertly attempt to pull the paper into a shape that I think is acceptable.

When I was a student I was not known for my ability to write, in fact I would say the opposite was probably true. Writing a paper is a skill that needs to be learnt and just like giving talks everyone needs to find their own style.

Before you write or type anything, remember that a good paper starts with researching how your work fits into existing literature. The next step is to craft a compelling story, whilst remembering to tailor your message to your intended audience.

There are many excellent websites/blogs/articles/books advising how to write a good paper so I am not going to attempt a full guide instead here are a few things to keep in mind.

  1. Have one story not more than one and not less – when you write the paper look at every word/image to see how it helps to deliver your main message.
  2. Once you know your key message it is often easiest to not write the paper in the order the sections appear! Creating the figures from the results first helps to structure the whole paper, then you can move on to methods, then write the results and discussion, then the conclusion, followed by the introduction, finishing up with the abstract and title.
  3. Always place your work in the context of what has already been done, what makes your work significant or original.
  4. Keep a consistent order – the order in which ideas come in the abstract should also be the same in the introduction, the methods, the results, the discussion etc.
  5. A paper should have a logical flow. In each paragraph, the first sentence defines context, the body is the new information, the last sentence is the take-home message/conclusion. The whole paper builds in the same way from the introduction setting the context, through the results which give the content, to the discussion’s conclusion. 
  6. Papers don’t need cliff hangers – main results/conclusions should be clear in the abstract.
  7. State your case with confidence.
  8. Papers don’t need to be written in a dry/technical style…
  9. …..but remove the hyperbole. Any claims should be backed up by the evidence in the paper.
  10. Get other people to read your work – their comments will help you (and unless it’s me you can always ignore their suggestions!)

OPIGlets go flying

Just like any other bioinformatician, I spend a lot of time every day in front of my computer and I am under no false pretence that my posture is anywhere near ideal. To counteract this, I have taken up the flying trapeze for some exercise and since classes run at ten participants, we decided that some other OPIGlets should try their hands at the circus arts on a fine summer evening!

Bonus points for Tobias for artistic presentation!
Continue reading

ISMB 2021: epitope prediction tools

I recently had the opportunity to present my work on antibody virtual screening at the 2021 ISMB/ECCB virtual conference. In this blogpost, I want to summarise two research projects presented in the 3DSIG immunoinformatics session (in which I also presented my work) highlighting two different avenues of approaching epitope prediction (and immunoinformatics questions in general): Structure-based (Epitope3D) and sequence-based (SeRenDIP-CE).

Continue reading

Uniformly sampled 3D rotation matrices

It’s not as simple as you’d think.

If you want to skip the small talk, the code is at the bottom. Sampling 2D rotations uniformly is simple: rotate by an angle from the uniform distribution \theta \sim U(0, 2\pi). Extending this idea to 3D rotations, we could sample each of the three Euler angles from the same uniform distribution \phi, \theta, \psi \sim U(0, 2\pi). This, however, gives more probability density to transformations which are clustered towards the poles:

Sampling Euler angles uniformly does not give an even distribution across the sphere.

In Fast Random Rotation Matrices (James Avro, 1992), a method for uniform random 3D rotation matrices is outlined, the main steps being:

Continue reading

Making your python tool as easy to install as possible

Have you ever tried to use someone else’s code and spent a whole day trying to install it? Have you ever decided not to use a tool because installing it was a massive pain? Both of those have happened to me and, to be honest, it is a massive shame. The authors may spend large amounts of time developing these tools and in the end, no one uses them because they can’t get them to work. So I have decided to try and make all code I develop as easy and painless as possible to install and use.

Continue reading

Linux Horror Stories and Protection Spells (Volume I)

Don’t get me wrong. I love Linux. After many years of using it, I ended up appreciating how flexible, potent, and even beautiful it is. However, using Linux has never been a bed of roses and every single Linux user that I know has had to deal with many problems since the very beginning. Indeed, I still remember how frustrating installing my first Linux machine was, especially after realizing that my network card was not working. Had I given up, I would never have written this post.

Although many of the problems that I faced while using Linux are related to updates and drivers (how painful NVidia drivers updates can be, I will write another post about that in the future), I must recognize that on many other occasions I was the only one responsible for such problems. Consequently, I want to warn the reader against a couple of those mistakes I made in the past and provide some tips about how to deal with them.

My worst nightmare: rm –r * 

Continue reading

AlphaFold 2 is here: what’s behind the structure prediction miracle

Nature has now released that AlphaFold 2 paper, after eight long months of waiting. The main text reports more or less what we have known for nearly a year, with some added tidbits, although it is accompanied by a painstaking description of the architecture in the supplementary information. Perhaps more importantly, the authors have released the entirety of the code, including all details to run the pipeline, on Github. And there is no small print this time: you can run inference on any protein (I’ve checked!).

Have you not heard the news? Let me refresh your memory. In November 2020, a team of AI scientists from Google DeepMind  indisputably won the 14th Critical Assessment of Structural Prediction competition, a biennial blind test where computational biologists try to predict the structure of several proteins whose structure has been determined experimentally but not publicly released. Their results were so astounding, and the problem so central to biology, that it took the entire world by surprise and left an entire discipline, computational biology, wondering what had just happened.

Continue reading

OPIGlets go Kayaking

The 1st of July was the day that the OPIGlets went kayaking!

Brennan very kindly offered to guide a kayaking session from the Oxford University Canoeing and Kayaking Club (OUCKC). There was great uptake from the group, with 10 members joining for a paddle.

The first task was to find a kayak long enough for Jack’s legs. Once he managed to wedge himself in to the largest kayak available, we moved onto being pushed down the ramp one by one, hoping that this would not lead to an immediate capsize.

Continue reading

A to Z of Alternative Antibody Formats: Next-Generation Therapeutics

Do you know your diabodies from your zybodies?

Antibodies are a highly important class of therapeutics used to treat a range of diseases. Given their success as therapeutics, a wide variety of alternative antibody formats have been developed – these are driving the next generation of antibody therapeutics.

To note, this is not an exhaustive list but rather intended to demonstrate the range of existing antibody formats.

Inspired by this article in The Guardian: “Rachel Roddy’s A-Z of pasta

Figure 1. Alternative Antibody Formats
Many of these figures were adapted from Spiess et al., 2015. Additionally, some of these formats have multiple variations or further possible forms (e.g., trispecific antibodies) – in these cases, one example is given here.

A – Antibodies

Antibodies – a fitting place to start this post. Antibodies are proteins produced by our immune systems to detect and protect against foreign pathogens. The ability of antibodies to bind molecules strongly and specifically – properties essential to their role in our immune defence – also make them valuable candidates for therapeutics. Antibody therapies have been developed for the treatment of various diseases, including cancers and viruses, and form a market estimated at over $100 billion1.

Continue reading

One of my other hats – Covid-19 Response Director for UK research and innovation

The group asked me if I would tell them a little bit about one of my other hats at our regular Tuesday meeting, and this blog is about that.

In October 2019 I was seconded part-time to UKRI as the Deputy Executive Chair of the Engineering and Physical Sciences Research council (EPSRC). What is UKRI (UK research and Innovation)? It’s a non-departmental public body that funds research and innovation. It is made up of the seven disciplinary research councils (acronyms to please Tom – AHRC, BBSRC, EPSRC, ESRC, NERC, STFC and MRC), Research England, and the UK’s innovation agency, Innovate UK.

As Deputy Executive Chair of EPSRC I was helping with UKRI strategy, learning how a spending review round works, visiting universities to talk about how they could work better with UKRI – pretty much everything I was expecting to be doing. But like everyone, my world changed in early 2020.

Continue reading