Category Archives: X-ray Crystallography

Walk through a cell

In 2022, Maritan et al. released the first ever macromolecular model of an entire cell. The cell in question is a bacterial cell from the genus Mycoplasma. If you’re a biologist, you likely know Mycoplasma as a common cell culture contaminant.

Now, through the work of app developer Timothy Davison, you can interactively explore this cell model from the comfort of your iPhone or Apple Vision Pro. Here are three reasons why I like CellWalk:

1. It’s pretty

The visuals of CellWalk are striking. The app offers a rich depiction of the cell, allowing the user to zoom from the whole cell to individual atoms. I spent a while clicking through each protein I could see to see if I could guess what it was or what it did. Zooming out, CellWalk offers a beautiful tripartite cross section of the cell, showing first the lipid membrane, then a colourful jumble-bag of all its cellular proteins, and then finally the spaghetti-like polynucleic acids.

Tripartite cross section of a Mycoplasma cell. Screengrab taken from the CellWalk app on my phone.
Continue reading

RSC Fragments 2024

I attended RSC Fragments 2024 (Hinxton, 4–5 March 2024), a conference dedicated to fragment-based drug discovery. The various talks were really good, because they gave overviews of projects involving teams across long stretches of time. As a result there were no slides discussing wet lab protocol optimisations and not a single Western blot was seen. The focus was primarily either illustrating a discovery platform or recounting a declassified campaign. The latter were interesting, although I’d admit I wish there had been more talk of organic chemistry —there was not a single moan/gloat about a yield. This top-down focus was nice as topics kept overlapping, namely:

  • Target choice,
  • covalents,
  • molecular glues,
  • whether to escape Flatland,
  • thermodynamics, and
  • cryptic pockets
Continue reading

9th Joint Sheffield Conference on Cheminformatics

Over the next few days, researchers from around the world will be gathering in Sheffield for the 9th Joint Sheffield Conference on Cheminformatics. As one of the organizers (wearing my Molecular Graphics and Modeling Society ‘hat’), I can say we have an exciting array of speakers and sessions:

  • De Novo Design
  • Open Science
  • Chemical Space
  • Physics-based Modelling
  • Machine Learning
  • Property Prediction
  • Virtual Screening
  • Case Studies
  • Molecular Representations

It has traditionally taken place every three years, but despite the global pandemic it is returning this year, once again in person in the excellent conference facilities at The Edge. You can download the full programme in iCal format, and here is the conference calendar:

Continue reading

histo.fyi: A Useful New Database of Peptide:Major Histocompatibility Complex (pMHC) Structures

pMHCs are set to become a major target class in drug discovery; unusual peptide fragments presented by MHC can be used to distinguish infected/cancerous cells from healthy cells more precisely than over-expressed biomarkers. In this blog post, I will highlight a prototype resource: Dr. Chris Thorpe’s new database of pMHC structures, histo.fyi.

histo.fyi provides a one-stop shop for data on (currently) around 1400 pMHC complexes. Similar to our dedicated databases for antibody/nanobody structures (SAbDab) and T-cell receptor (TCR) structures (STCRDab), histo.fyi will scrape the PDB on a weekly basis for any new pMHC data and process these structures in a way that facilitates their analysis.

Continue reading

CryoEM is now the dominant technique for solving antibody structures

Last year, the Structural Antibody Database (SAbDab) listed a record-breaking 894 new antibody structures, driven in no small part by the continued efforts of the researchers to understand SARS-CoV-2.

Fig. 1: The aggregate growth in antibody structure data (all methods) over time. Taken from http://opig.stats.ox.ac.uk/webapps/newsabdab/sabdab/stats/ on 25th May 2022.

In this blog post I wanted to highlight the major driving force behind this curve – the huge increase in cryo electron microscopy (cryoEM) data – and the implications of this for the field of structure-based antibody informatics.

Continue reading

Fragment Based Drug Discovery with Crystallographic Fragment Screening at XChem and Beyond

Disclaimer: I’m a current PhD student working on PanDDA 2 for Frank von Delft and Charlotte Deane, and sponsored by Global Phasing, and some of this is my opinion – if it isn’t obvious in one of the references I probably said it so take it with a pinch of salt

Fragment Based Drug Discovery

Principle

Fragment based drugs discovery (FBDD) is a technique for finding lead compounds for medicinal chemistry. In FBDD a protein target of interest is identified for inhibition and a small library, typically of a few hundred compounds, is screened against it. Though these typically bind weakly, they can be used as a starting point for chemical elaboration towards something more lead-like. This approach is primarily contrasted with high throughput screening (HTS), in which an enormous number of larger, more complex molecules are screened in order to find ones which bind. The key idea is recognizing that the molecules in these HTS libraries can typically be broken down into a much smaller number of common substructures, fragments, so screening these ought to be more informative: between them they describe more of the “chemical space” which interacts with the protein. Since it first appeared about 25 years ago, FBDD has delivered four drugs for clinical use and over 40 molecules to clinical trials.

Continue reading

Model validation in Crystallographic Fragment Screening

Fragment based drug discovery is a powerful technique for finding lead compounds for medicinal chemistry. Crystallographic fragment screening is particularly useful because it informs one not just about whether a fragment binds, but has the advantage of providing information on how it binds. This information allows for rational elaboration and merging of fragments.

However, this comes with a unique challenge: the confidence in the experimental readout, if and how a fragment binds, is tied to the quality of the crystallographic model that can be built. This intimately links crystallographic fragment screening to the general statistical idea of a “model”, and the statistical ideas of goodness of fit and overfitting.

Continue reading

Real Space Correlation Coefficient

Introduction

In crystalography we are often faced with the question of how well a part of our model fits the data. Now crystalography has well developed probability models for the reflection amplitudes given then entire fitted model, but these do not provide a metric for “how much of the ligand is inside the blob”. This is because the reflection based models are inherently global.

Continue reading