Recently, I was able to attend Martin Grohe’s talk on The Logic of Graph Neural Networks. Professor Grohe of RWTH Aachen University, is a titan of the fields of Logic and Complexity theory. Even so, he is modest about his achievements, and I was tickled when it was pointed out to me that the theorem he refers to as “a little complex”, one of his crowning achievements, involves a four-hundred page long book of a proof.
The theorem relates to the Weisfeiler-Lehmann (WL) algorithm, an algorithm for determining whether two graphs are equivalent (i.e. isomorphic). The algorithm has deep connections with combinatorics, complexity theory and first order logic. A system of logic that is remarkably similar to the relations present in ontologies such as the Gene Ontology (GO), which is commonly used to compare and predict protein function. Kernelised methods and other WL-based metrics present a new and possibly logically “complete” way to potentially compare the functions of proteins and infer their similarity.
Continue reading