Category Archives: Small Molecules

How to turn a SMILES string into an extended-connectivity fingerprint using RDKit

After my posts on how to turn a SMILES string into a molecular graph and how to turn a SMILES string into a vector of molecular descriptors I now complete this series by illustrating how to turn the SMILES string of a molecular compound into an extended-connectivity fingerprint (ECFP).

ECFPs were originally described in a 2010 article of Rogers and Hahn [1] and still belong to the most popular and efficient methods to turn a molecule into an informative vectorial representation for downstream machine learning tasks. The ECFP-algorithm is dependent on two predefined hyperparameters: the fingerprint-length L and the maximum radius R. An ECFP of length L takes the form of an L-dimensional bitvector containing only 0s and 1s. Each component of an ECFP indicates the presence or absence of a particular circular substructure in the input compound. Each circular substructure has a center atom and a radius that determines its size. The hyperparameter R defines the maximum radius of any circular substructure whose presence or absence is indicated in the ECFP. Circular substructures for a central nitrogen atom in an example compound are depicted in the image below.

Continue reading

Code your own molecule sketcher in 4 easy steps!

Drawing molecules on your laptop usually requires access to proprietary software such as ChemDraw (link) or free websites such as PubChem’s online sketcher (link). However, if you are feeling adventurous, you can build your personal sketcher in React/Typescript using the Ketcher package!

Ketcher is an open-source package that allows easy implementation of a molecule sketcher into a web application. Unfortunately, it does require TypeScript so the script to run it cannot be imported directly into an HTML page. Therefore we will set up a simple React app to get it working.

The sketcher is very sleek and has a vast array of functionality, such as choosing any atom from the periodic table and being able to directly import molecules from either SMILES or Mol2/SDF file format into the sketcher. These molecules can then be edited and saved to a new file in the chemical file format of your choosing.

Continue reading

Graphormer: Merging GNNs and Transformers for Cheminformatics

This is my first OPIG blog! I’m going to start with a summary of the Graphormer, a Graph Neural Network (GNN) that borrows concepts from Transformers to boost performance on graph tasks. This post is largely based on the NeurIPS paper Do Transformers Really Perform Bad for Graph Representation? by Ying et. al., which introduces the Graphormer, and which we read for our last deep learning journal club. The project has now been integrated as a Microsoft Research project.

I’ll start with a cheap and cheerful summary of Transformers and GNNs before diving into the changes in the Graphormer. Enjoy!

Continue reading

Universal graph pooling for GNNs

Graph neural networks (GNNs) have quickly become one of the most important tools in computational chemistry and molecular machine learning. GNNs are a type of deep learning architecture designed for the adaptive extraction of vectorial features directly from graph-shaped input data, such as low-level molecular graphs. The feature-extraction mechanism of most modern GNNs can be decomposed into two phases:

  • Message-passing: In this phase the node feature vectors of the graph are iteratively updated following a trainable local neighbourhood-aggregation scheme often referred to as message-passing. Each iteration delivers a set of updated node feature vectors which is then imagined to form a new “layer” on top of all the previous sets of node feature vectors.
  • Global graph pooling: After a sufficient number of layers has been computed, the updated node feature vectors are used to generate a single vectorial representation of the entire graph. This step is known as global graph readout or global graph pooling. Usually only the top layer (i.e. the final set of updated node feature vectors) is used for global graph pooling, but variations of this are possible that involve all computed graph layers and even the set of initial node feature vectors. Commonly employed global graph pooling strategies include taking the sum or the average of the node features in the top graph layer.

While a lot of research attention has been focused on designing novel and more powerful message-passing schemes for GNNs, the global graph pooling step has often been treated with relative neglect. As mentioned in my previous post on the issues of GNNs, I believe this to be problematic. Naive global pooling methods (such as simply summing up all final node feature vectors) can potentially form dangerous information bottlenecks within the neural graph learning pipeline. In the worst case, such information bottlenecks pose the risk of largely cancelling out the information signal delivered by the message-passing step, no matter how sophisticated the message-passing scheme.

Continue reading

Filtering molecules with long linkers

Recently I was tasked with filtering out ‘stringy’ molecules that were being produced with the fragment merging method I’m working on (that is, molecules with lots of consecutive non-ring bonds that weren’t necessarily caught with my rotatable bond filter). While this is quite a niche/specific task, through this I discovered a couple of RDKit functions that I wasn’t previously aware of but might be helpful for other people regularly looking at small molecules. The demo adapts code from this helpful blogpost on cutting a molecule into rings and linkers from ‘Is life worth living?’ (which is a useful source of cheminformatics wisdom; https://iwatobipen.wordpress.com/2020/01/23/cut-molecule-to-ring-and-linker-with-rdkit-rdkit-chemoinformatics-memo/). Obviously in practice you may be applying lots of different filters to enumerated molecules, but this is just a small example of something I found useful. 

The Jupyter Notebook can be found at: 

https://github.com/stephwills/Demo-removing-stringy-molecules/blob/main/Molecule%20filter.ipynb

Happy coding, 

Steph 

Meeko: Docking straight from SMILES string

When docking, using software like AutoDock Vina, you must prepare your ligand by protonating the molecule, generating 3D coordinates, and converting it to a specific file format (in the case of Vina, PDBQT). Docking software typically needs the protein and ligand file inputs to be written on disk. This is limiting as generating 10,000s of files for a large virtual screen can be annoying and hinder the speed at which you dock.

Fortunately, the Forli group in Scripps Research have developed a Python package, Meeko, to prepare ligands directly from SMILES or other molecule formats for docking to AutoDock 4 or Vina, without writing any files to disk. This means you can dock directly from a single file containing all the SMILES of the ligands you are investigating!

Continue reading

5th Artificial Intelligence in Chemistry Symposium

The lineup for the Royal Society of Chemistry’s 5th “Artificial Intelligence in Chemistry” Symposium (Thursday-Friday, 1st-2nd September 2022) is now complete for both oral and poster presentations. It really is a fantastic selection of topics and speakers and it is clear this event is now a highlight of the scientific calendar. Our very own Prof. Charlotte M. Deane, MBE will be giving a keynote.

5th RSC-BMCS/RSC-CICAG Airtificial Intelligence in Chemistry Symposium, 1st-2nd September, Churchill College, Cambridge + Zoom broadcast.

It marks a return to in-person meetings: it will be held at Churchill College, Cambridge, with a conference dinner at Trinity Hall.

More details are here: https://www.rscbmcs.org/events/aichem22/.

Registration for in person attendance is open until Monday 29th August 17:00 (BST).

It is also possible to register for virtual attendance; the meeting will be broadcast on Zoom.

Exploring topological fingerprints in RDKit

Finding a way to express the similarity of irregular and discrete molecular graphs to enable quantitative algorithmic reasoning in chemical space is a fundamental problem in data-driven small molecule drug discovery.

Virtually all algorithms that are widely and successfully used in this setting boil down to extracting and comparing (multi-)sets of subgraphs, differing only in the space of substructures they consider and the extent to which they are able to adapt to specific downstream applications.

A large body of recent work has explored approaches centred around graph neural networks (GNNs), which can often maximise both of these considerations. However, the subgraph-derived embeddings learned by these algorithms may not always perform well beyond the specific datasets they are trained on and for many generic or resource-constrained applications more traditional “non-parametric” topological fingerprints may still be a viable and often preferable choice .

This blog post gives an overview of the topological fingerprint algorithms implemented in RDKit. In general, they count the occurrences of a certain family of subgraphs in a given molecule and then represent this set/multiset as a bit/count vector, which can be compared to other fingerprints with the Jaccard/Dice similarity metric or further processed by other algorithms.

Continue reading