Category Archives: Python

Automated intermolecular interaction detection using the ODDT Python Module

Detecting intermolecular interactions is often one of the first steps when assessing the binding mode of a ligand. This usually involves the human researcher opening up a molecular viewer and checking the orientations of the ligand and protein functional groups, sometimes aided by the viewer’s own interaction detecting functionality. For looking at single digit numbers of structures, this approach works fairly well, especially as more experienced researchers can spot cases where the automated interaction detection has failed. When analysing tens or hundreds of binding sites, however, an automated way of detecting and recording interaction information for downstream processing is needed. When I had to do this recently, I used an open-source Python module called ODDT (Open Drug Discovery Toolkit, its full documentation can be found here).

My use case was fairly standard: starting with a list of holo protein structures as pdb files and their corresponding ligands in .sdf format, I wanted to detect any hydrogen bonds between a ligand and its native protein crystal structure. Specifically, I needed the number and name of the the interacting residue, its chain ID, and the name of the protein atom involved in the interaction. A general example on how to do this can be found in the ODDT documentation. Below, I show how I have used the code on PDB structure 1a9u.

Continue reading

Hosting multiple Flask apps using Apache/mod_wsgi

A common way of deploying a Flask web application in a production environment is to use an Apache server with the mod_wsgi module, which allows Apache to host any application that supports Python’s Web Server Gateway Interface (WSGI), making it quick and easy to get an application up and running. In this post, we’ll go through configuring your Apache server to host multiple Python apps in a stable manner, including how to run apps in daemon mode and avoiding hanging processes due to Python C extensions not working well with Python sub-interpreters (I’m looking at you, numpy).

Continue reading

Calculating symmeterised small molecule RMSDs using graph automorphisms in python with GEMMI and NetworkX

When a ring flips, how do we calculate RMSD?

This surprisingly simple question leads to a very interesting problem! If we take a benzene molecule, say, and rotate it 180 degrees, then we have the exact same molecule, but if we have a data structure in which our atoms are labelled, and we apply the same transformation to the atomic positions, the numbering does not reflect that symmetry. If we were then naively to calculate the RMSD it would be huge, despite the fact that the molecule is, chemically speaking, identical.

How can we make our RMSD calculations reflect these symmetries?

Continue reading

BioDataScience101: a fantastic initiative to learn bioinformatics and data science

Last Wednesday, I was fortunate enough to be invited as a guest lecturer to the 3rd BioDataScience101 workshop, an initiative spearheaded by Paolo Marcatili, Professor of Bioinformatics at the Technical University of Denmark (DTU). This session, on amino acid sequence analysis applied to both proteomics and antibody drug discovery, was designed and organised by OPIG’s very own Tobias Olsen.

Continue reading

PyMOL: colour by residue

PyMOL is a handy free way of viewing three dimensional protein structures. It allows you to toggle between different representations of the protein – such as cartoon, surface, sticks, etc. – which all have their own pros and cons.

However one thing I felt that PyMOL lacked was an easy way to visually distinguish residues based on type. Whist you can easily differentiate atom types based on colour in the colour menu, and even choose which colour you wish carbons to show up as whilst keeping heteroatoms different colours, this assigned carbon colour would be constant throughout the entire protein.

Continue reading

PyMOL: colouring proteins by property

We all love pretty, colourful pictures of proteins. There is quite a variety of programs to produce publication-quality images of proteins, some of the most popular being VMD, PyMOL and Chimera. Each has advantages and disadvantages — for example, VMD is particularly good to deal with molecular dynamics simulations (perhaps that’s why it is called “Visual Molecular Dynamics”?), and Chimera is able to produce breathtaking graphics with very little user input. In my work, however, I tend to peruse PyMOL: a Python interface is incredibly helpful to produce quick analyses.

Continue reading

K-Means clustering made simple

The 21st century is often referred to as the age of “Big Data” due to the unprecedented increase in the volumes of data being generated. As most of this data comes without labels, making sense of it is a non-trivial task. To gain insight from unlabelled data, unsupervised machine learning algorithms have been developed and continue to be refined. These algorithms determine underlying relationships within the data by grouping data points into cluster families. The resulting clusters not only highlight associations within the data, but they are also critical for creating predictive models for new data.

Continue reading

Storing variables in Jupyter Notebooks using %store magic

We’ve all been there. You’ve just run an expensive computation in your Jupyter Notebook and are about to draw those conclusions which will prove that your theories were right all along (until you find the sixteen bugs in your code which render them invalid, but that’s an issue for a different time). Then at the critical moment, your flatmate begins streaming their Lord Of The Rings marathon in 4k and your already temperamental Wi-Fi severs your connection to the department servers in protest, crashing your Jupyter Notebook, leaving your hopes and dreams in tatters.

Continue reading

Transforming Parliament – Training and deploying speech generation transformers for parliamentary speakers

Introduction

I recently wanted to explore areas of machine learning that I do not usually interact with as part of my DPhil research on antibody drug discovery. This post explores how to train and deploy a speech generation model for parliamentary speeches in the style of Jeremy Corbyn and Boris Johnson. You can play around with the resulting model at https://con-schneider.github.io/theytalktoyou.html.

Continue reading