Category Archives: Proteins

Ribosome occupancy profiles are conserved between structurally and evolutionarily related yeast domains

Shameless plug for any OPIG blog readers to take a look at our recent publication in Bioinformatics. Consider giving it a read if the below summary grabs your attention.

Many proteins are now known to fold during their synthesis through the process known as co-translational folding. Translation is an inherently non-equilibrium process – one consequence of this fact is that the speed of translation can radically influence the ability of proteins to fold and function. In this paper we compare ribosome occupancy profiles between related domains in yeast to test the hypothesis that evolutionarily related proteins with similar native folds should tend to have similar translation speed profiles to preserve efficient co-translational folding. We find strong evidence in support of this hypothesis at the level of individual protein domains and across a set of 664 pairs of related domains for which we are able to compute high-quality ribosome occupancy profiles.

To find out more, view the Advance Article at Bioinformatics.

Miniproteins – small but mighty!

Proteins come in all shapes and sizes, ranging from thousands of amino acids in length to less than 20. However, smaller size does not correlate with reduced importance. Miniproteins, which are commonly defined as being less than 100 amino acids long, are receiving increased attention for their potential roles as pharmaceuticals. A recent paper by David Baker’s group put miniproteins into the spotlight, as the study authors were able to design miniproteins that bind the SARS-CoV-2 spike protein with as strong affinity as an antibody would – but in a tiny fraction of the size (Cao et al., 2020). These miniproteins are much cheaper to manufacture than antibodies (as they can be expressed in bacteria) and can be highly stable (with melting temperatures of >90º possible, meaning they can easily be stored at room temperature). The most promising miniprotein developed by the Baker group (LCB1) is currently undergoing testing to be used as a prophylactic nasal spray that provides protection against SARS-CoV-2 infection. These promising results – and the speed in which progress was made – brings the vast potential of miniproteins in healthcare to the fore.

Continue reading

An in vivo force sensor reveals varied mechanisms of co-translational force generation

This blog post comments on the results published by Fujiwara and co-workers in the 2020 Cell Reports article “Proteome-wide capture of co-translational protein dynamics in Bacillus subtilis using TnDR, a transposable protein-dynamics reporter.”

The study of mechanical force generation and its influence on biological systems has expanded in recent years. In the realm of nascent protein folding, we now know that both unstructured and folded nascent proteins generate forces on the order of piconewtons that propagate down the nascent chain. These forces can distort the functional site of the ribosome and may influence the rate of translation (PMIDs: 30824598, 29577725). It has also been shown that translational arrest can be relieved by mechanical force (PMID: 25908824). Much study has focused on so-called arrest peptides, short peptide sequences that interact so strongly with the ribosome exit tunnel that they can completely stall translation (e.g., SecM, MifM).

Continue reading

Curious About the Origins of Computerized Molecules? Free Webinar Dec 22…

After the stunning announcement at CASP14 that DeepMind’s AlphaFold 2 had successfully predicted the structures of proteins from their sequence alone, it’s hard to believe we began this journey by representing molecules with punched cards

Image of a punched card, showing 80 columns and 12 rows, with particular rectangular holes representing the 1 bits of binary numbers. The upper right corner is cut at an angle, to facilitate feeding the card into a punched card reader. The column numbers are printed along the bottom. The words “IBM UNITED KINGDOM LIMITED” are printed along the very bottom. This card is line 12 from a Fortran program, “12 PIFRA=(A(JB,37)-A(JB,99))/A(JB,47) PUX 0430”. Image Credit: Pete Birkinshaw, Manchester, U.K. CC BY 2.0

Tales of carrying stacks of punched cards to the computer centre with a line drawn diagonally on the side of the stack, to help put them back in order should you trip and fall—seem like another universe—but this is what passed for the human-computer interface in much of the mid-20th century.

Continue reading

CASP14: what Google DeepMind’s AlphaFold 2 really achieved, and what it means for protein folding, biology and bioinformatics

Disclaimer: this post is an opinion piece based on the experience and opinions derived from attending the CASP14 conference as a doctoral student researching protein modelling. When provided, quotes have been extracted from my notes of the event, and while I hope to have captured them as accurately as possible, I cannot guarantee that they are a word-by-word facsimile of what the individuals said. Neither the Oxford Protein Informatics Group nor I accept any responsibility for the content of this post.

You might have heard it from the scientific or regular press, perhaps even from DeepMind’s own blog. Google ‘s AlphaFold 2 indisputably won the 14th Critical Assessment of Structural Prediction competition, a biannual blind test where computational biologists try to predict the structure of several proteins whose structure has been determined experimentally — yet not publicly released. Their results are so incredibly accurate that many have hailed this code as the solution to the long-standing protein structure prediction problem.

Continue reading

BioDataScience101: a fantastic initiative to learn bioinformatics and data science

Last Wednesday, I was fortunate enough to be invited as a guest lecturer to the 3rd BioDataScience101 workshop, an initiative spearheaded by Paolo Marcatili, Professor of Bioinformatics at the Technical University of Denmark (DTU). This session, on amino acid sequence analysis applied to both proteomics and antibody drug discovery, was designed and organised by OPIG’s very own Tobias Olsen.

Continue reading

It’s been here all along: Analysis of the antibody DE loop

In my work, I mainly look at antigen-bound antibodies and this means a lot of analysing interfaces. Specifically, I spend a lot of my time examining the contributions of complementarity-determining regions (CDRs) to antigen binding, but what about antibodies where the framework (FW) region also contributes to binding? Such structures do exist, and these interactions are rarely trivial. As such, a recent preprint I came across where the authors examined the DE loops of antibodies was a great motivator to broaden my horizons!

Continue reading

PyMOL: colouring proteins by property

We all love pretty, colourful pictures of proteins. There is quite a variety of programs to produce publication-quality images of proteins, some of the most popular being VMD, PyMOL and Chimera. Each has advantages and disadvantages — for example, VMD is particularly good to deal with molecular dynamics simulations (perhaps that’s why it is called “Visual Molecular Dynamics”?), and Chimera is able to produce breathtaking graphics with very little user input. In my work, however, I tend to peruse PyMOL: a Python interface is incredibly helpful to produce quick analyses.

Continue reading