Category Archives: Protein Engineering

Antibody Engineering and Therapeutics Conference

I was invited to speak at the Antibody Engineering and Therapeutics Conference (presenting mine and Matt’s recently published epitope profiling paper), in San Diego (December 12th – 16th). Unfortunately, the pandemic had other ideas so I decided not to travel but luckily the conference was hybrid. 

The conference included 1 day of pre-conference workshops and 4 days of presentations from academic and industry, with livestreaming of the initial keynotes (including one from Charlotte). Remaining talks were recorded and made available after the conference. I’ve highlighted a few of my favourite talks and conference themes, with links to papers where available.

Naturally, a lot of the presented research related to covid-19. I was speaking in the ‘Antibody Repertoires and Covid-19’ session, where there were interesting presentations from Professor Eline Luning Prak from the University of Pennsylvania and Elaine Chen from Vanderbilt University analysing antibody responses in covid-recovered individuals, and comparing vaccine responses in covid-recovered vs covid-naiive individuals. Other talks around SARS-CoV-2 vaccines included Dr Laura Walker from Adimab/Adagio Therapeutics comparing BCR repertoire responses to different types of vaccinations, and the effect of using different booster types.

Continue reading

Highlights from the European Antibody Congress 2021

Last month, I was fortunate enough to be able to attend (in person!) and present at the Festival of Biologics European Antibody Congress (9-11 November, 2021) in Basel, Switzerland. The Festival of Biologics is an annual conference, which brings together researchers from industry and academia. It was an excellent opportunity to learn about exciting research and meet people working in the antibody development field.

Here are some of my highlights from the European Antibody Congress, with a focus on antibody design and engineering:

Continue reading

Targeted protein degradation phenotypic studies using HaloTag CRISPR/Cas9 endogenous target tagging and HaloPROTAC

Biologists currently have several options in their arsenal when it comes to gene silencing. if you want to completely vanquish the gene in question, you can use CRISPR to knock the gene out completely. This is a great way to completely eliminate the gene, and hence compare cell phenotypes with and without the gene, but it’s less good if the gene is essential and the cells won’t grow without it in the first place. 

Otherwise you can use RNA interference, where small pieces of RNA that complement the mRNA for that gene are introduced to the cell, with the overall effect of blocking transcription of that gene’s mRNA, hence silencing it. However, this method suffers from side effects and varying levels of gene knockdown efficiency. Moreover, it does not vanquish existing protein, it just stops more from being produced.

Continue reading

A to Z of Alternative Antibody Formats: Next-Generation Therapeutics

Do you know your diabodies from your zybodies?

Antibodies are a highly important class of therapeutics used to treat a range of diseases. Given their success as therapeutics, a wide variety of alternative antibody formats have been developed – these are driving the next generation of antibody therapeutics.

To note, this is not an exhaustive list but rather intended to demonstrate the range of existing antibody formats.

Inspired by this article in The Guardian: “Rachel Roddy’s A-Z of pasta

Figure 1. Alternative Antibody Formats
Many of these figures were adapted from Spiess et al., 2015. Additionally, some of these formats have multiple variations or further possible forms (e.g., trispecific antibodies) – in these cases, one example is given here.

A – Antibodies

Antibodies – a fitting place to start this post. Antibodies are proteins produced by our immune systems to detect and protect against foreign pathogens. The ability of antibodies to bind molecules strongly and specifically – properties essential to their role in our immune defence – also make them valuable candidates for therapeutics. Antibody therapies have been developed for the treatment of various diseases, including cancers and viruses, and form a market estimated at over $100 billion1.

Continue reading

How fast can a protein fold?

A protein’s folding time is the time required for it to reach its unique folded state starting from its unfolded ensemble. Globular, cytosolic proteins can only attain their intended biological function once they have folded. This means that protein folding times, which typically exceed the timescales of enzymatic reactions that proteins carry out by several orders of magnitude, are critical to determining when proteins become functional. Many scientists have worked tirelessly over the years to measure protein folding times, determine their theoretical bounds, and understand how they fit into biology. Here, I focus on one of the more interesting questions to fall out of this field over the years: how fast can a protein fold? Note that this is a very different question than asking “how fast do proteins fold?”

Continue reading

The Coronavirus Antibody Database: 10 months on, 10x the data!

Back in May 2020, we released the Coronavirus Antibody Database (‘CoV-AbDab’) to capture molecular information on existing coronavirus-binding antibodies, and to track what we anticipated would be a boon of data on antibodies able to bind SARS-CoV-2. At the time, we had found around 300 relevant antibody sequences and a handful of solved crystal structures, most of which were characterised shortly after the SARS-CoV epidemic of 2003. We had no idea just how many SARS-CoV-2 binding antibody sequences would come to be released into the public domain…

10 months later (2nd March 2021), we now have tracked 2,673 coronavirus-binding antibodies, ~95% with full Fv sequence information and ~5% with solved structures. These datapoints originate from 100s of independent studies reported in either the academic literature or patent filings.

The entire contents CoV-AbDab database as of 2nd March 2021.
Continue reading

Miniproteins – small but mighty!

Proteins come in all shapes and sizes, ranging from thousands of amino acids in length to less than 20. However, smaller size does not correlate with reduced importance. Miniproteins, which are commonly defined as being less than 100 amino acids long, are receiving increased attention for their potential roles as pharmaceuticals. A recent paper by David Baker’s group put miniproteins into the spotlight, as the study authors were able to design miniproteins that bind the SARS-CoV-2 spike protein with as strong affinity as an antibody would – but in a tiny fraction of the size (Cao et al., 2020). These miniproteins are much cheaper to manufacture than antibodies (as they can be expressed in bacteria) and can be highly stable (with melting temperatures of >90º possible, meaning they can easily be stored at room temperature). The most promising miniprotein developed by the Baker group (LCB1) is currently undergoing testing to be used as a prophylactic nasal spray that provides protection against SARS-CoV-2 infection. These promising results – and the speed in which progress was made – brings the vast potential of miniproteins in healthcare to the fore.

Continue reading

BioDataScience101: a fantastic initiative to learn bioinformatics and data science

Last Wednesday, I was fortunate enough to be invited as a guest lecturer to the 3rd BioDataScience101 workshop, an initiative spearheaded by Paolo Marcatili, Professor of Bioinformatics at the Technical University of Denmark (DTU). This session, on amino acid sequence analysis applied to both proteomics and antibody drug discovery, was designed and organised by OPIG’s very own Tobias Olsen.

Continue reading

Protein Engineering and Structure Determination

Sometimes it can be advantageous to combine two proteins into one. One such technique was described by Jennifer Padilla, Christos Colovos, and Todd Yeates back in 2001 (Padilla, et al., 2001). By connecting two proteins, one that dimerized, and another that trimerized, they were able to design synthetic ‘nanohedra’. The way they achieved this was by extending a C-terminal α-helix at the end of one protein by another α-helix ‘linker’, directly into the N-terminal α-helix of another protein:

Continue reading

A program to aid primary protein structure determination -1962 style.

This year, OPIG have been doing series of weekly lectures on papers we considered to be seminal in the field of protein informatics. I initially started looking at “Comprotein: A computer program to aid primary protein structure determination” as it was one of the earliest (1960s) papers discussing a computational method of discovering the primary structure of proteins. Many bioinformaticians use these well-formed, tidy, sterile arrays of amino acids as the input to their work, for example:

MGLSDGEWQL VLNVWGKVEA DIPGHGQEVL IRLFKGHPET LEKFDKFKHL KSEDEMKASE DLKKHGATVL TALGGILKKK GHHEAEIKPL AQSHATKHKI PVKYLEFISE CIIQVLQSKH PGDFGADAQG AMNKALELFR KDMASNYKEL GFQG
(For those of you playing at home, that’s myoglobin.)

As the OPIG crew come from a diverse background and frequently ask questions well beyond my area of expertise, if for nothing other than posterior-covering, I needed to do some background reading. Though I’m not a researcher by trade any more, I began to realise despite the lectures/classes/papers/seminars I’d been exposed to, regarding all the clever things you do with a sequence when you have it, I didn’t know how you would actually go from a bunch of cells expressing (amongst a myriad of other molecules) the protein you were interested in, to the neat array of characters shown above. So without further ado:

The first stage in obtaining your protein is: cell lysis and there’s not much in it for the cell.
Mangle your cell using chemicals, enzymes, sonification or a French press (not your coffee one).

The second stage is producing a crude extract by centrifuging the above cell-mangle. This, terrifyingly, appears to be done between 10,000G and 100,000G and removes the cellular debris leaving it as a pellet in the bottom of the container, with the supernatant containing little but a mix of the proteins which were present in the cytoplasm along with some additional macromolecules.

Stage three is to purify the crude extract. Depending on the properties of the protein you’re interested in, one or more of the following stages are required:

  • Reverse-phase chromatography to separate based on hydrophobicity
  • Ion-exchange to separate based on the charge of the proteins
  • Gel-filtration to separate based on the size of the proteins

If all of the above are preformed, whilst the sequence of these variously charged/size-sorted/polar proteins will still be still unknown, they will now be sorted into various substrates based upon their properties. This is where the the third stage departs from science and lands squarely in the realm of art. The detergents/protocols/chemicals/enzymes/temperatures/pressures of the above techniques all differ depending on the hydrophobicity/charge/animal source of the type of protein one is aiming to extract.

Since at this point we still don’t know their sequence, working out the concentrations of the various constituent amino acids will be useful. One of the simplest methods of determining the amino acid concentrations of a protein is follow a procedure similar to:

Heat the sample in 6M HCL at at a temperature of 110C for 18-24h (or more) to fully hydrolyse all the peptide bonds. This may require an extended period (over 72h) to hydrolyse peptide bonds which are known to be more stable, such as those involving valine, isoleucine and leucine. This however can degrade Ser/Thr/Tyr/Try/Gln and Cys which will subsequently skew results. An alternative is to raise the pressure in the vessel to allow temperatures of 145-155C to for 20-240 minutes.

TL;DR: Take the glassware that’s been lying about your lab since before you were born, put 6M hydrochloric acid in it and bring to the boil. Take one difficultly refined and still totally unknown protein and put it in your boiling hydrochloric acid. Seal the above glassware in order to use it as a pressure vessel. Retreat swiftly whilst the apparatus builds up the appropriate pressure and cleaves the protein as required. -What could go wrong?

At this point I wondered if the almost exponential growth in PDB entries was due to humanity’s herd of biochemists now having been thinned to those which remained simply being several generations worth of lucky.

Once you have an idea of how many of each type of amino acid comprise your protein, we can potentially rebuild it. However at this point it’s like we’ve got a jigsaw puzzle and though we’ve got all the pieces and each piece can only be one of a limited selection of colours (thus making it a combinatorial problem) we’ve no idea what the pattern on the box should be. To further complicate matters, since this isn’t being done on but a single copy of the protein at a time, it’s like someone has put multiple copies of the same jigsaw into the box.

Once we have all the pieces, to determine the actual sequence, a second technique needs to be used. Though invented in 1950, Edman degradation appears not to have been a particularly widespread protocol, or at least it wasn’t in the National Biomedical Research Foundation from which the above paper emerged. This means of degradation tags the N-terminal amino acid and cleaves it from the rest of the protein. This can then be identified and the protocol repeated. Whilst this would otherwise be ideal, it suffers from a few issues in that it takes about an hour per cycle, only works reliably on sequences of about 30 amino acids and doesn’t work at all for proteins which have their n-terminus bonded or buried.

Instead, the refined protein is cleaved into a number of fragments at known points using a single enzyme. For example, Trypsin will cleave on the carboxyl side of arginine and lysine residues. A second copy of the protein is then cleaved using a different enzyme at a different point. These individual fragments are then sorted as above and their individual (non-sequential) components determined.

For example, if we have a protein which has an initial sequence ABCDE
Which then gets cleaved by two different enzymes to give:
Enzyme 1 : (A, B, C) and (D, E)
Enzyme 2 : (A, B) and (C, D)

We can see that the (C, D) fragment produced by Enzyme 2 overlaps with the (A, B, C) and (D, E) fragments produced by Enzyme 1. However, as we don’t know the order in which the amino acid appear within in each fragment, thus there are a number of different sequences which can come to light:

Possibility 1 : A B C D E
Possibility 2 : B A C D E
Possibility 3 : E D C A B
Possibility 4 : E D C B A

At this point the paper comments that such a result highlights to the biochemist that the molecule requires further work for refinement. Sadly the above example whilst relatively simple doesn’t include the whole host of other issues which plague the biochemist in their search for an exact sequence.