Category Archives: Protein Engineering

What is a plantibody?

Plants can be genetically engineered to express non-native proteins, for example, crops can be engineered to produce insect toxins in order to improve disease-resistance. However, I was not aware of their ability to express antibodies until, inspired by my expanding collection of house plants, I googled ‘plant immune systems’. 

Plants don’t naturally produce antibodies – they do not possess an adaptive immune system or any circulating immune defence cells. Despite this, plants can be made to express and assemble full length antibody heavy chains and light chains. This was first published back in 1989, when Hiatt et al. [1] successfully introduced mouse immunoglobulin genes to tobacco plants and produced functional antibodies with reasonable efficiency. The excellent term ‘plantibody‘ was coined soon after, to refer to antibodies and fragments of antibodies produced by plants transformed with antibody-coding genes. 

Continue reading

Antibody Engineering and Therapeutics Conference

I was invited to speak at the Antibody Engineering and Therapeutics Conference (presenting mine and Matt’s recently published epitope profiling paper), in San Diego (December 12th – 16th). Unfortunately, the pandemic had other ideas so I decided not to travel but luckily the conference was hybrid. 

The conference included 1 day of pre-conference workshops and 4 days of presentations from academic and industry, with livestreaming of the initial keynotes (including one from Charlotte). Remaining talks were recorded and made available after the conference. I’ve highlighted a few of my favourite talks and conference themes, with links to papers where available.

Naturally, a lot of the presented research related to covid-19. I was speaking in the ‘Antibody Repertoires and Covid-19’ session, where there were interesting presentations from Professor Eline Luning Prak from the University of Pennsylvania and Elaine Chen from Vanderbilt University analysing antibody responses in covid-recovered individuals, and comparing vaccine responses in covid-recovered vs covid-naiive individuals. Other talks around SARS-CoV-2 vaccines included Dr Laura Walker from Adimab/Adagio Therapeutics comparing BCR repertoire responses to different types of vaccinations, and the effect of using different booster types.

Continue reading

Highlights from the European Antibody Congress 2021

Last month, I was fortunate enough to be able to attend (in person!) and present at the Festival of Biologics European Antibody Congress (9-11 November, 2021) in Basel, Switzerland. The Festival of Biologics is an annual conference, which brings together researchers from industry and academia. It was an excellent opportunity to learn about exciting research and meet people working in the antibody development field.

Here are some of my highlights from the European Antibody Congress, with a focus on antibody design and engineering:

Continue reading

Targeted protein degradation phenotypic studies using HaloTag CRISPR/Cas9 endogenous target tagging and HaloPROTAC

Biologists currently have several options in their arsenal when it comes to gene silencing. if you want to completely vanquish the gene in question, you can use CRISPR to knock the gene out completely. This is a great way to completely eliminate the gene, and hence compare cell phenotypes with and without the gene, but it’s less good if the gene is essential and the cells won’t grow without it in the first place. 

Otherwise you can use RNA interference, where small pieces of RNA that complement the mRNA for that gene are introduced to the cell, with the overall effect of blocking transcription of that gene’s mRNA, hence silencing it. However, this method suffers from side effects and varying levels of gene knockdown efficiency. Moreover, it does not vanquish existing protein, it just stops more from being produced.

Continue reading

A to Z of Alternative Antibody Formats: Next-Generation Therapeutics

Do you know your diabodies from your zybodies?

Antibodies are a highly important class of therapeutics used to treat a range of diseases. Given their success as therapeutics, a wide variety of alternative antibody formats have been developed – these are driving the next generation of antibody therapeutics.

To note, this is not an exhaustive list but rather intended to demonstrate the range of existing antibody formats.

Inspired by this article in The Guardian: “Rachel Roddy’s A-Z of pasta

Figure 1. Alternative Antibody Formats
Many of these figures were adapted from Spiess et al., 2015. Additionally, some of these formats have multiple variations or further possible forms (e.g., trispecific antibodies) – in these cases, one example is given here.

A – Antibodies

Antibodies – a fitting place to start this post. Antibodies are proteins produced by our immune systems to detect and protect against foreign pathogens. The ability of antibodies to bind molecules strongly and specifically – properties essential to their role in our immune defence – also make them valuable candidates for therapeutics. Antibody therapies have been developed for the treatment of various diseases, including cancers and viruses, and form a market estimated at over $100 billion1.

Continue reading

How fast can a protein fold?

A protein’s folding time is the time required for it to reach its unique folded state starting from its unfolded ensemble. Globular, cytosolic proteins can only attain their intended biological function once they have folded. This means that protein folding times, which typically exceed the timescales of enzymatic reactions that proteins carry out by several orders of magnitude, are critical to determining when proteins become functional. Many scientists have worked tirelessly over the years to measure protein folding times, determine their theoretical bounds, and understand how they fit into biology. Here, I focus on one of the more interesting questions to fall out of this field over the years: how fast can a protein fold? Note that this is a very different question than asking “how fast do proteins fold?”

Continue reading

The Coronavirus Antibody Database: 10 months on, 10x the data!

Back in May 2020, we released the Coronavirus Antibody Database (‘CoV-AbDab’) to capture molecular information on existing coronavirus-binding antibodies, and to track what we anticipated would be a boon of data on antibodies able to bind SARS-CoV-2. At the time, we had found around 300 relevant antibody sequences and a handful of solved crystal structures, most of which were characterised shortly after the SARS-CoV epidemic of 2003. We had no idea just how many SARS-CoV-2 binding antibody sequences would come to be released into the public domain…

10 months later (2nd March 2021), we now have tracked 2,673 coronavirus-binding antibodies, ~95% with full Fv sequence information and ~5% with solved structures. These datapoints originate from 100s of independent studies reported in either the academic literature or patent filings.

The entire contents CoV-AbDab database as of 2nd March 2021.
Continue reading

Miniproteins – small but mighty!

Proteins come in all shapes and sizes, ranging from thousands of amino acids in length to less than 20. However, smaller size does not correlate with reduced importance. Miniproteins, which are commonly defined as being less than 100 amino acids long, are receiving increased attention for their potential roles as pharmaceuticals. A recent paper by David Baker’s group put miniproteins into the spotlight, as the study authors were able to design miniproteins that bind the SARS-CoV-2 spike protein with as strong affinity as an antibody would – but in a tiny fraction of the size (Cao et al., 2020). These miniproteins are much cheaper to manufacture than antibodies (as they can be expressed in bacteria) and can be highly stable (with melting temperatures of >90º possible, meaning they can easily be stored at room temperature). The most promising miniprotein developed by the Baker group (LCB1) is currently undergoing testing to be used as a prophylactic nasal spray that provides protection against SARS-CoV-2 infection. These promising results – and the speed in which progress was made – brings the vast potential of miniproteins in healthcare to the fore.

Continue reading

BioDataScience101: a fantastic initiative to learn bioinformatics and data science

Last Wednesday, I was fortunate enough to be invited as a guest lecturer to the 3rd BioDataScience101 workshop, an initiative spearheaded by Paolo Marcatili, Professor of Bioinformatics at the Technical University of Denmark (DTU). This session, on amino acid sequence analysis applied to both proteomics and antibody drug discovery, was designed and organised by OPIG’s very own Tobias Olsen.

Continue reading

Protein Engineering and Structure Determination

Sometimes it can be advantageous to combine two proteins into one. One such technique was described by Jennifer Padilla, Christos Colovos, and Todd Yeates back in 2001 (Padilla, et al., 2001). By connecting two proteins, one that dimerized, and another that trimerized, they were able to design synthetic ‘nanohedra’. The way they achieved this was by extending a C-terminal α-helix at the end of one protein by another α-helix ‘linker’, directly into the N-terminal α-helix of another protein:

Continue reading