Category Archives: News

CryoEM is now the dominant technique for solving antibody structures

Last year, the Structural Antibody Database (SAbDab) listed a record-breaking 894 new antibody structures, driven in no small part by the continued efforts of the researchers to understand SARS-CoV-2.

Fig. 1: The aggregate growth in antibody structure data (all methods) over time. Taken from http://opig.stats.ox.ac.uk/webapps/newsabdab/sabdab/stats/ on 25th May 2022.

In this blog post I wanted to highlight the major driving force behind this curve – the huge increase in cryo electron microscopy (cryoEM) data – and the implications of this for the field of structure-based antibody informatics.

Continue reading

New Antibody Therapeutic INNs will no longer end in “-mab”!

Happy 2022, Blopiggers!

My first post of the year is about another major change to the way the World Health Organisation will be assigning “International Non-proprietary Name”s (INNs) to antibody-based therapeutics. I haven’t seen this publicised widely, so I thought I’d share it here as it is an important consideration for anyone mining or exploiting this data.

Continue reading

2021 likely to be a bumper year for therapeutic antibodies entering clinical trials; massive increase in new targets

Earlier this month the World Health Organisation (WHO) released Proposed International Nonproprietary Name List 125 (PL125), comprising the therapeutics entering clinical trials during the first half of 2021. We have just added this data to our Therapeutic Structural Antibody Database (Thera-SAbDab), bringing the total number of therapeutic antibodies recognised by the WHO to 711.

This is up from 651 at the end of 2020, a year which saw 89 new therapeutic antibodies introduced to the clinic. This rise of 60 in just the first half of 2021 bodes well for a record-breaking year of therapeutics entering trials.

Continue reading

Curious About the Origins of Computerized Molecules? Free Webinar Dec 22…

After the stunning announcement at CASP14 that DeepMind’s AlphaFold 2 had successfully predicted the structures of proteins from their sequence alone, it’s hard to believe we began this journey by representing molecules with punched cards

Image of a punched card, showing 80 columns and 12 rows, with particular rectangular holes representing the 1 bits of binary numbers. The upper right corner is cut at an angle, to facilitate feeding the card into a punched card reader. The column numbers are printed along the bottom. The words “IBM UNITED KINGDOM LIMITED” are printed along the very bottom. This card is line 12 from a Fortran program, “12 PIFRA=(A(JB,37)-A(JB,99))/A(JB,47) PUX 0430”. Image Credit: Pete Birkinshaw, Manchester, U.K. CC BY 2.0

Tales of carrying stacks of punched cards to the computer centre with a line drawn diagonally on the side of the stack, to help put them back in order should you trip and fall—seem like another universe—but this is what passed for the human-computer interface in much of the mid-20th century.

Continue reading

The Coronavirus Antibody Database (CoV-AbDab)

We are happy to announce the release of CoV-AbDab, our database tracking all coronavirus binding antibodies and nanobodies with molecular-level metadata. The database can be searched and downloaded here: http://opig.stats.ox.ac.uk/webapps/coronavirus

Continue reading

The evolution of contact prediction – a new paper

I’m so pleased to be able to write about our work on The evolution of contact prediction: evidence that contact selection in statistical contact prediction is changing (Bioinformatics btz816). Contact prediction – the prediction of parts of the amino-acid chain that are close together – has been critical to improving the ability of scientists to predict protein structures over the last decade. Here we look at the properties of these predictions, and what that might mean for their use.

The paper begins with a question. If contact prediction methods are based on statistical properties of sequence alignments, and those alignments are generated in the presence of ecological and physical constraints, what effect do the physical constraints have on the statistical properties of real sequence alignments? More concisely: when we predict contacts, do we predict particularly important contacts?

Continue reading

Prof. Charlotte Deane on the World Service

Prof. Charlotte Deane, the new Deputy Executive Chair of the EPSRC, Deputy Head of Division of MPLS, and Head of the Oxford Protein Informatics Group, was interviewed by BBC World Service’s programme “Tech Tent”, about the role of AI in drug discovery; jump to about 13:30 to hear Charlotte, and the segment on AI in healthcare starts at 9:45:

https://www.bbc.co.uk/sounds/play/w3csymsv