The lineup for the Royal Society of Chemistry’s 5th “Artificial Intelligence in Chemistry” Symposium (Thursday-Friday, 1st-2nd September 2022) is now complete for both oral and poster presentations. It really is a fantastic selection of topics and speakers and it is clear this event is now a highlight of the scientific calendar. Our very own Prof. Charlotte M. Deane, MBE will be giving a keynote.
It marks a return to in-person meetings: it will be held at Churchill College, Cambridge, with a conference dinner at Trinity Hall.
I was planning on doing a blog post about some cool random deep learning paper that I have read in the last year or so. However, I keep finding that someone else has already written a way better blog post than what I could write. Instead I have decided to write a very brief summary of some hot ideas and then provide a link to some other page where someone describes it way better than me.
Anyways, the hypothesis says the following: “Dense, randomly-initialized, feed-forward networks contain subnetworks (winning tickets) that—when trained in isolation—reach test accuracy comparable to the original network in a similar number of iterations.” In their analogy, the random initialization of a models weights is treated like a lottery, where some combination of a subset of these weight is already pretty close to the network you want to train (winning ticket). For a better description and a summary of advances in this field I would recommend this blog post.
SAM: Sharpness aware minimization
The key idea here has to do with finding the best optimizer to train a model capable of generalization. According to this paper, a model that has converged to a sharp minima will be less likely to generalize than one that has converged to a flatter minima. They show the following plot to provide an intuition of why this may be the case.
Finding a way to express the similarity of irregular and discrete molecular graphs to enable quantitative algorithmic reasoning in chemical space is a fundamental problem in data-driven small molecule drug discovery.
Virtually all algorithms that are widely and successfully used in this setting boil down to extracting and comparing (multi-)sets of subgraphs, differing only in the space of substructures they consider and the extent to which they are able to adapt to specific downstream applications.
A large body of recent work has explored approaches centred around graph neural networks (GNNs), which can often maximise both of these considerations. However, the subgraph-derived embeddings learned by these algorithms may not always perform well beyond the specific datasets they are trained on and for many generic or resource-constrained applications more traditional “non-parametric” topological fingerprints may still be a viable and often preferable choice .
This blog post gives an overview of the topological fingerprint algorithms implemented in RDKit. In general, they count the occurrences of a certain family of subgraphs in a given molecule and then represent this set/multiset as a bit/count vector, which can be compared to other fingerprints with the Jaccard/Dice similarity metric or further processed by other algorithms.
Over the past year, I have been working on building a graph-based paratope (antibody binding site) prediction tool – Paragraph. Fortunately, I have had moderate success with this and you can now check out the preprint of this work here.
However, for a long time, I struggled with a highly unstable network, where different random seeds yielded very different results. I believe this instability was largely due to the high class imbalance in my data – only ~10% of all residues in the Fv (variable region of the antibody) belong to the paratope.
I tried many different things in an attempt to stabilise my training, most of which failed. I will share all of these ideas with you though – successful or not – as what works for one person/network is never guaranteed to work for another. I hope that the below may provide some ideas to try out for others facing similar issues. Where possible, I also provide some example hyperparameter values that could act as sensible starting points.