Category Archives: Databases

Diagnostics on the Cutting Edge, Software in the Stone Age: A Microbiology Story

The need to treat and control infectious diseases has challenged humanity for millennia, driving a series of remarkable advancements in diagnostic tools and techniques. One of the earliest known legal texts, the Code of Hammurabi, references the visual and tactile diagnosis of leprosy. For centuries, the distinct smell of infected wounds was used to identify gangrene, and in Ancient Greece and Rome, the balance of the four humors (blood, phlegm, black bile, and yellow bile) was a central theory in diagnosing infections.

The invention of the compound microscope in 1590 by Hans and Zacharias Janssen, and its refinements by Robert Hooke and Antonie van Leeuwenhoek, marked a turning point as it enabled the direct observation of microorganisms, thereby linking diseases to their microbial origins. Louis Pasteur’s introduction of liquid media aided Joseph Lister in identifying microbes as the source of surgical infections, whilst Robert Koch’s experiments with Bacillus anthracis firmly established the connection between specific microbes and diseases.

Continue reading

What can you do with the OPIG Immunoinformatics Suite? v3.0

OPIG’s growing immunoinformatics team continues to develop and openly distribute a wide variety of databases and software packages for antibody/nanobody/T-cell receptor analysis. Below is a summary of all the latest updates (follows on from v1.0 and v2.0).

Continue reading

9th Joint Sheffield Conference on Cheminformatics

Over the next few days, researchers from around the world will be gathering in Sheffield for the 9th Joint Sheffield Conference on Cheminformatics. As one of the organizers (wearing my Molecular Graphics and Modeling Society ‘hat’), I can say we have an exciting array of speakers and sessions:

  • De Novo Design
  • Open Science
  • Chemical Space
  • Physics-based Modelling
  • Machine Learning
  • Property Prediction
  • Virtual Screening
  • Case Studies
  • Molecular Representations

It has traditionally taken place every three years, but despite the global pandemic it is returning this year, once again in person in the excellent conference facilities at The Edge. You can download the full programme in iCal format, and here is the conference calendar:

Continue reading

Machine learning strategies to overcome limited data availability

Machine learning (ML) for biological/biomedical applications is very challenging – in large part due to limitations in publicly available data (something we recently published about [1]). Substantial amounts of time and resources may be required to generate the types of data (eg protein structures, protein-protein binding affinity, microscopy images, gene expression values) required to train ML models, however.

In cases where there is sufficient data available to provide signal, but not enough for the desired performance, ML strategies can be employed:

Continue reading

Exploring the Observed Antibody Space (OAS)

The Observed Antibody Space (OAS) [1,2] is an amazing resource for investigating observed antibodies or as a resource for training antibody specific models, however; its size (over 2.4 billion unpaired and 1.5 million paired antibody sequences as of June 2023) can make it painful to work with. Additionally, OAS is extremely information rich, having nearly 100 columns for each antibody heavy or light chain, further complicating how to handle the data. 

From spending a lot of time working with OAS, I wanted to share a few tricks and insights, which I hope will reduce the pain and increase the joy of working with OAS!

Continue reading

histo.fyi: A Useful New Database of Peptide:Major Histocompatibility Complex (pMHC) Structures

pMHCs are set to become a major target class in drug discovery; unusual peptide fragments presented by MHC can be used to distinguish infected/cancerous cells from healthy cells more precisely than over-expressed biomarkers. In this blog post, I will highlight a prototype resource: Dr. Chris Thorpe’s new database of pMHC structures, histo.fyi.

histo.fyi provides a one-stop shop for data on (currently) around 1400 pMHC complexes. Similar to our dedicated databases for antibody/nanobody structures (SAbDab) and T-cell receptor (TCR) structures (STCRDab), histo.fyi will scrape the PDB on a weekly basis for any new pMHC data and process these structures in a way that facilitates their analysis.

Continue reading

Retrieving AlphaFold models from AlphaFoldDB

There are now nearly a million AlphaFold [1] protein structure predictions openly available via AlphaFoldDB [2]. This represents a huge set of new data that can be used for the development of new methods. The options for downloading structures are either in bulk (sorted by genome), or individually from the webpage for a prediction.

If you want just a few hundred or a few thousand specific structures, across different genomes, neither of these options are particularly practical. For example, if you have several thousand experimental structures for which you have their PDB [3] code, and you want to obtain the equivalent AlphaFold predictions, there is another way!

If we take the example of the PDB’s current molecule of the month, pyruvate kinase (PDB code 4FXF), this is how you can go about downloading the equivalent AlphaFold prediction programmatically.

  1. Query UniProt [4] for the corresponding accession number – an example python script is shown below:
Continue reading

CryoEM is now the dominant technique for solving antibody structures

Last year, the Structural Antibody Database (SAbDab) listed a record-breaking 894 new antibody structures, driven in no small part by the continued efforts of the researchers to understand SARS-CoV-2.

Fig. 1: The aggregate growth in antibody structure data (all methods) over time. Taken from http://opig.stats.ox.ac.uk/webapps/newsabdab/sabdab/stats/ on 25th May 2022.

In this blog post I wanted to highlight the major driving force behind this curve – the huge increase in cryo electron microscopy (cryoEM) data – and the implications of this for the field of structure-based antibody informatics.

Continue reading