Category Archives: Data Science

How to easily use pharmacophoric atom features to turn ECFPs into FCFPs

Today’s post builds on my earlier blogpost on how to turn a SMILES string into an extended-connectivity fingerprint using RDKit and describes an interesting and easily implementable modification of the extended-connectivity fingerprint (ECFP) featurisation. This modification is based on representing the atoms in the input compound at a different (and potentially more useful) level of abstraction.

We remember that each binary component of an ECFP indicates the presence or absence of a particular circular subgraph in the input compound. Circular subgraphs that are structurally isomorphic are further distinguished according to their inherited atom- and bond features, i.e. two structurally isomorphic circular subgraphs with distinct atom- or bond features correspond to different components of the ECFP. For chemical bonds, this distinction is made on the basis of simple bond types (single, double, triple, or aromatic). To distinguish atoms, standard ECFPs use seven features based on the Daylight atomic invariants [1]; but there is also another less commonly used and often overlooked version of the ECFP that uses pharmacophoric atom features instead [2]. Pharmacophoric atom features attempt to describe atomic properties that are critical for biological activity or binding to a target protein. These features try to capture the potential for important chemical interactions such as hydrogen bonding or ionic bonding. ECFPs that use pharmacophoric atom features instead of standard atom features are called functional-connectivity fingerprints (FCFPs). The exact sets of standard- vs. pharmacophoric atom features for ECFPs vs. FCFPs are listed in the table below.

In RDKit, ECFPs can be changed to FCFPs extremely easily by changing a single input argument. Below you can find a Python/RDKit implementation of a function that turns a SMILES string into an FCFP if use_features = True and into an ECFP if use_features = False.

# import packages
import numpy as np
from rdkit.Chem import AllChem

# define function that transforms a SMILES string into an FCFP if use_features = True and into an ECFP if use_features = False
def FCFP_from_smiles(smiles,
                     R = 2,
                     L = 2**10,
                     use_features = True,
                     use_chirality = False):
    """
    Inputs:
    
    - smiles ... SMILES string of input compound
    - R ... maximum radius of circular substructures
    - L ... fingerprint-length
    - use_features ... if true then use pharmacophoric atom features, if false then use standard DAYLIGHT atom features
    - use_chirality ... if true then append tetrahedral chirality flags to atom features
    
    Outputs:
    - np.array(feature_list) ... FCFP/ECFP with length L and maximum radius R
    """
    
    molecule = AllChem.MolFromSmiles(smiles)
    feature_list = AllChem.GetMorganFingerprintAsBitVect(molecule,
                                                         radius = R,
                                                         nBits = L,
                                                         useFeatures = use_features,
                                                         useChirality = use_chirality)
    return np.array(feature_list)

The use of pharmacophoric atom features makes FCFPs more specific to molecular interactions that drive biological activity. In certain molecular machine-learning applications, replacing ECFPs with FCFPs can therefore lead to increased performance and decreased learning time, as important high-level atomic properties are presented to the learning algorithm from the start and do not need to be inferred statistically. However, the standard atom features used in ECFPs contain more detailed low-level information that could potentially still be relevant for the prediction task at hand and thus be utilised by the learning algorithm. It is often unclear from the outset whether FCFPs will provide a substantial advantage over ECFPs in a given application; however, given how easy it is to switch between the two, it is almost always worth trying out both options.

[1] Weininger, David, Arthur Weininger, and Joseph L. Weininger. “SMILES. 2. Algorithm for generation of unique SMILES notation.” Journal of Chemical Information and Computer Sciences 29.2 (1989): 97-101.

[2] Rogers, David, and Mathew Hahn. “Extended-connectivity fingerprints.” Journal of Chemical Information and Modeling 50.5 (2010): 742-754.

Datamining Wikipedia and writing JS with ChatGTP just to swap the colours on university logos…

I am not sure the University of Oxford logo works in the gold from the University of Otago…

A few months back I moved from the Oxford BRC to OPIG, both within the university of Oxford, but like many in academia I have moved across a few universities. As this is my first post here I wanted to do something neat: a JS tool that swapped colours in university logos!
It was a rather laborious task requiring a lot of coding, but once I got it working, I ended up tripping up at the last metre. So for technical reasons, I have resorted to hosting it in my own blog (see post), but nevertheless the path towards it is worth discussing.

Continue reading

histo.fyi: A Useful New Database of Peptide:Major Histocompatibility Complex (pMHC) Structures

pMHCs are set to become a major target class in drug discovery; unusual peptide fragments presented by MHC can be used to distinguish infected/cancerous cells from healthy cells more precisely than over-expressed biomarkers. In this blog post, I will highlight a prototype resource: Dr. Chris Thorpe’s new database of pMHC structures, histo.fyi.

histo.fyi provides a one-stop shop for data on (currently) around 1400 pMHC complexes. Similar to our dedicated databases for antibody/nanobody structures (SAbDab) and T-cell receptor (TCR) structures (STCRDab), histo.fyi will scrape the PDB on a weekly basis for any new pMHC data and process these structures in a way that facilitates their analysis.

Continue reading

Cleaning outliers in conductance timeseries from molecular dynamics

Have you ever had an annoying dataset that looks something like this?

or even worse, just several of them

In this blog post, I will introduce basic techniques you can use and implement with Python to identify and clean outliers. The objective will be to get something more eye-pleasing (and mostly less troublesome for further data analysis) like this

Continue reading

How to turn a SMILES string into an extended-connectivity fingerprint using RDKit

After my posts on how to turn a SMILES string into a molecular graph and how to turn a SMILES string into a vector of molecular descriptors I now complete this series by illustrating how to turn the SMILES string of a molecular compound into an extended-connectivity fingerprint (ECFP).

ECFPs were originally described in a 2010 article of Rogers and Hahn [1] and still belong to the most popular and efficient methods to turn a molecule into an informative vectorial representation for downstream machine learning tasks. The ECFP-algorithm is dependent on two predefined hyperparameters: the fingerprint-length L and the maximum radius R. An ECFP of length L takes the form of an L-dimensional bitvector containing only 0s and 1s. Each component of an ECFP indicates the presence or absence of a particular circular substructure in the input compound. Each circular substructure has a center atom and a radius that determines its size. The hyperparameter R defines the maximum radius of any circular substructure whose presence or absence is indicated in the ECFP. Circular substructures for a central nitrogen atom in an example compound are depicted in the image below.

Continue reading

Universal graph pooling for GNNs

Graph neural networks (GNNs) have quickly become one of the most important tools in computational chemistry and molecular machine learning. GNNs are a type of deep learning architecture designed for the adaptive extraction of vectorial features directly from graph-shaped input data, such as low-level molecular graphs. The feature-extraction mechanism of most modern GNNs can be decomposed into two phases:

  • Message-passing: In this phase the node feature vectors of the graph are iteratively updated following a trainable local neighbourhood-aggregation scheme often referred to as message-passing. Each iteration delivers a set of updated node feature vectors which is then imagined to form a new “layer” on top of all the previous sets of node feature vectors.
  • Global graph pooling: After a sufficient number of layers has been computed, the updated node feature vectors are used to generate a single vectorial representation of the entire graph. This step is known as global graph readout or global graph pooling. Usually only the top layer (i.e. the final set of updated node feature vectors) is used for global graph pooling, but variations of this are possible that involve all computed graph layers and even the set of initial node feature vectors. Commonly employed global graph pooling strategies include taking the sum or the average of the node features in the top graph layer.

While a lot of research attention has been focused on designing novel and more powerful message-passing schemes for GNNs, the global graph pooling step has often been treated with relative neglect. As mentioned in my previous post on the issues of GNNs, I believe this to be problematic. Naive global pooling methods (such as simply summing up all final node feature vectors) can potentially form dangerous information bottlenecks within the neural graph learning pipeline. In the worst case, such information bottlenecks pose the risk of largely cancelling out the information signal delivered by the message-passing step, no matter how sophisticated the message-passing scheme.

Continue reading

5th Artificial Intelligence in Chemistry Symposium

The lineup for the Royal Society of Chemistry’s 5th “Artificial Intelligence in Chemistry” Symposium (Thursday-Friday, 1st-2nd September 2022) is now complete for both oral and poster presentations. It really is a fantastic selection of topics and speakers and it is clear this event is now a highlight of the scientific calendar. Our very own Prof. Charlotte M. Deane, MBE will be giving a keynote.

5th RSC-BMCS/RSC-CICAG Airtificial Intelligence in Chemistry Symposium, 1st-2nd September, Churchill College, Cambridge + Zoom broadcast.

It marks a return to in-person meetings: it will be held at Churchill College, Cambridge, with a conference dinner at Trinity Hall.

More details are here: https://www.rscbmcs.org/events/aichem22/.

Registration for in person attendance is open until Monday 29th August 17:00 (BST).

It is also possible to register for virtual attendance; the meeting will be broadcast on Zoom.

Exploring topological fingerprints in RDKit

Finding a way to express the similarity of irregular and discrete molecular graphs to enable quantitative algorithmic reasoning in chemical space is a fundamental problem in data-driven small molecule drug discovery.

Virtually all algorithms that are widely and successfully used in this setting boil down to extracting and comparing (multi-)sets of subgraphs, differing only in the space of substructures they consider and the extent to which they are able to adapt to specific downstream applications.

A large body of recent work has explored approaches centred around graph neural networks (GNNs), which can often maximise both of these considerations. However, the subgraph-derived embeddings learned by these algorithms may not always perform well beyond the specific datasets they are trained on and for many generic or resource-constrained applications more traditional “non-parametric” topological fingerprints may still be a viable and often preferable choice .

This blog post gives an overview of the topological fingerprint algorithms implemented in RDKit. In general, they count the occurrences of a certain family of subgraphs in a given molecule and then represent this set/multiset as a bit/count vector, which can be compared to other fingerprints with the Jaccard/Dice similarity metric or further processed by other algorithms.

Continue reading

Sharing Data Responsibly: The FAIR Principles

So you’ve submitted your paper, made your code publicly available, and maybe even provided documentation to ensure somebody can reproduce your work. But what about the data your work is based on? Is that readily available to your readers, too?

Maybe it’s too large to put on GitHub alongside your code. Maybe it’s sensitive, or subject to GDPR restrictions, so you can’t just stick a download link on your website. Maybe it’s in a proprietary format that needs non-open software to read. There are many reasons sharing data can be less straightforward than sharing code, and often it’s not entirely clear what ‘best practices’ are for a given situation. Data management is a complicated topic, and to do it justice would require far more than a quick blog post. Instead, I’d like to focus on a single source of guidance that serves as a useful starting point for thinking about responsible data management: the FAIR principles.

Continue reading

Making better plots with matplotlib.pyplot in Python3

The default plots made by Python’s matplotlib.pyplot module are almost always insufficient for publication. With a ~20 extra lines of code, however, you can generate high-quality plots suitable for inclusion in your next article.

Let’s start with code for a very default plot:

import matplotlib.pyplot as plt
import numpy as np

np.random.seed(1)
d1 = np.random.normal(1.0, 0.1, 1000)
d2 = np.random.normal(3.0, 0.1, 1000)
xvals = np.arange(1, 1000+1, 1)

plt.plot(xvals, d1, label='data1')
plt.plot(xvals, d2, label='data2')
plt.legend(loc='best')
plt.xlabel('Time, ns')
plt.ylabel('RMSD, Angstroms')
plt.savefig('bad.png', dpi=300)

The result of this will be:

Plot generated with matplotlib.pyplot defaults

The fake data I generated for the plot look something like Root Mean Square Deviation (RMSD) versus time for a converged molecular dynamics simulation, so let’s pretend they are. There are a number of problems with this plot: it’s overall ugly, the color scheme is not very attractive and may not be color-blind friendly, the y-axis range of the data extends outside the range of the tick labels, etc.

We can easily convert this to a much better plot:

Continue reading