Category Archives: Python

Mapping derivative compounds to parent hits

Whereas it is easy to say in a paper “Given the HT-Sequential-ITC results, 42 led to 113, a substituted decahydro-2,6-methanocyclopropa[f]indene”, it is frequently rather trickier algorithmically figure out which atoms map to which. In Fragmenstein, for the placement route, for example, a lot goes on behind the scenes, yet for some cases human provided mapping may be required. Here I discuss how to get the mapping from Fragmenstein and what goes on behind the scenes.

Continue reading

Using JAX and Haiku to build a Graph Neural Network


JAX

Last year, I had an opportunity to delve into the world of JAX whilst working at InstaDeep. My first blopig post seems like an ideal time to share some of that knowledge. JAX is an experimental Python library created by Google’s DeepMind for applying accelerated differentiation. JAX can be used to differentiate functions written in NumPy or native Python, just-in-time compile and execute functions on GPUs and TPUs with XLA, and mini-batch repetitious functions with vectorization. Collectively, these qualities place JAX as an ideal candidate for accelerated deep learning research [1].

JAX is inspired by the NumPy API, making usage very familiar for any Python user who has already worked with NumPy [2]. However, unlike NumPy, JAX arrays are immutable; once they are assigned in memory they cannot be changed. As such, JAX includes specific syntax for index manipulation. In the code below, we create a JAX array and change the 1^{st} element to a 4:

Continue reading

Under-rated or overlooked, these libraries might be helpful.

Discovering a library that massively simplifies the exact thing you just did right after you’ve finished doing the thing you needed to do has to be one of the top 14 worst things about writing code. You might think it’s a part of the life we’ve all chosen, but it doesn’t have to be. Beyond the popular libraries you already know lies a treasure trove of under appreciated packages waiting to be wielded. Being the saint I am, I’ve scoured the depths of pypi.org to find some underrated and hopefully useful packages to make your life a little easier.

Continue reading

Plotext: The Matplotlib Lookalike That Breaks Free from X Servers

Imagine this: you’ve spent days computing intricate analyses, and now it’s time to bring your findings to life with a nice plot. You fire up your cluster job, scripts hum along, and… matplotlib throws an error, demanding an X server it can’t find. Frustration sets in. What a waste of computation! What happened? You just forgot to add the -X to your ssh command, or it may be just that X forwarding is not allowed in your cluster. So you will need to rerun your scripts, once you have modified them to generate a file that you can copy to your local machine rather than plotting it directly.

But wait! Plotext to the rescue! This Python package provides an interface nearly identical to matplotlib, allowing you to seamlessly transition your plotting code without sacrificing functionality. But why choose Plotext over the familiar matplotlib? The key lies in its text-based backend. This means it is just printing characters in your console to generate the plots, making it ideal for cluster environments where X servers are often absent or restricted. What do those plots look like? Here is an example:

Continue reading

Working with PDB Structures in Pandas

Pandas is one of my favourite data analysis tools working in Python! The data frames offer a lot of power and organization to any data analysis task. Here at OPIG we work with a lot of protein structure data coming from PDB files. In the following article I will go through an example of how I use pandas data frames to analyze PDB data.

Continue reading

The stuff MDAnalysis didn’t implement: CPU Parallel HOLE conductance analysis

Some time ago, I needed to find a way to computationally estimate conductance values for every protein frame from several molecular dynamics (MD) trajectories.

In a previous post, I wrote about how to clean the resulting instant conductance timeseries from outliers. But, I never described how I generated these timeseries.

In this post, I will show how you can parallelise the computation of instant conductance given an MD trajectory. I will touch on the difficulties of this process. And why I had to implement a custom tool for it given that MDAnalysis seems to already have implemented a routine of this sort. Finally, I will provide two Python scripts that you can easily adapt to run your parallel calculations – for which I’ll provide some important notes you don’t wanna skip.

Violin plots of conductance distributions from 64 molecular dynamic trajectories with 1000 frames each.
Continue reading

Taking Equivariance in deep learning for a spin?

I recently went to Sheh Zaidi‘s brilliant introduction to Equivariance and Spherical Harmonics and I thought it would be useful to cement my understanding of it with a practical example. In this blog post I’m going to start with serotonin in two coordinate frames, and build a small equivariant neural network that featurises it.

Continue reading

Some useful pandas functions

Pandas is one of the most used packages for data analysis in python. The library provides functionalities that allow to perfrom complex data manipulation operations in a few lines of code. However, as the number of functions provided is huge, it is impossible to keep track of all of them. More often than we’d like to admit we end up wiriting lines and lines of code only to later on discover that the same operation can be performed with a single pandas function.

To help avoiding this problem in the future, I will run through some of my favourite pandas functions and demonstrate their use on an example data set containing information of crystal structures in the PDB.

Continue reading

Let your library design blosum

During the lead optimisation stage of the drug discovery pipeline, we might wish to make mutations to an initially identified binding antibody to improve properties such as developability, immunogenicity, and affinity.

There are many ways we could go about suggesting these mutations including using Large Language Models e.g. ESM and AbLang, or Inverse Folding methods e.g. ProteinMPNN and AntiFold. However, some of our recent work (soon to be pre-printed) has shown that classical non-Machine Learning approaches, such as BLOSUM, could also be worth considering at this stage.

Continue reading

Converting pandas DataFrames into Publication-Ready Tables

Analysing, comparing and communicating the predictive performance of machine learning models is a crucial component of any empirical research effort. Pandas, a staple in the Python data analysis stack, not only helps with the data wrangling itself, but also provides efficient solutions for data presentation. Two of its lesser-known yet incredibly useful features are df.to_markdown() and df.to_latex(), which allow for a seamless transition from DataFrames to publication-ready tables. Here’s how you can use them!

Continue reading