Category Archives: Python

Plotext: The Matplotlib Lookalike That Breaks Free from X Servers

Imagine this: you’ve spent days computing intricate analyses, and now it’s time to bring your findings to life with a nice plot. You fire up your cluster job, scripts hum along, and… matplotlib throws an error, demanding an X server it can’t find. Frustration sets in. What a waste of computation! What happened? You just forgot to add the -X to your ssh command, or it may be just that X forwarding is not allowed in your cluster. So you will need to rerun your scripts, once you have modified them to generate a file that you can copy to your local machine rather than plotting it directly.

But wait! Plotext to the rescue! This Python package provides an interface nearly identical to matplotlib, allowing you to seamlessly transition your plotting code without sacrificing functionality. But why choose Plotext over the familiar matplotlib? The key lies in its text-based backend. This means it is just printing characters in your console to generate the plots, making it ideal for cluster environments where X servers are often absent or restricted. What do those plots look like? Here is an example:

Continue reading

Working with PDB Structures in Pandas

Pandas is one of my favourite data analysis tools working in Python! The data frames offer a lot of power and organization to any data analysis task. Here at OPIG we work with a lot of protein structure data coming from PDB files. In the following article I will go through an example of how I use pandas data frames to analyze PDB data.

Continue reading

The stuff MDAnalysis didn’t implement: CPU Parallel HOLE conductance analysis

Some time ago, I needed to find a way to computationally estimate conductance values for every protein frame from several molecular dynamics (MD) trajectories.

In a previous post, I wrote about how to clean the resulting instant conductance timeseries from outliers. But, I never described how I generated these timeseries.

In this post, I will show how you can parallelise the computation of instant conductance given an MD trajectory. I will touch on the difficulties of this process. And why I had to implement a custom tool for it given that MDAnalysis seems to already have implemented a routine of this sort. Finally, I will provide two Python scripts that you can easily adapt to run your parallel calculations – for which I’ll provide some important notes you don’t wanna skip.

Violin plots of conductance distributions from 64 molecular dynamic trajectories with 1000 frames each.
Continue reading

Taking Equivariance in deep learning for a spin?

I recently went to Sheh Zaidi‘s brilliant introduction to Equivariance and Spherical Harmonics and I thought it would be useful to cement my understanding of it with a practical example. In this blog post I’m going to start with serotonin in two coordinate frames, and build a small equivariant neural network that featurises it.

Continue reading

Some useful pandas functions

Pandas is one of the most used packages for data analysis in python. The library provides functionalities that allow to perfrom complex data manipulation operations in a few lines of code. However, as the number of functions provided is huge, it is impossible to keep track of all of them. More often than we’d like to admit we end up wiriting lines and lines of code only to later on discover that the same operation can be performed with a single pandas function.

To help avoiding this problem in the future, I will run through some of my favourite pandas functions and demonstrate their use on an example data set containing information of crystal structures in the PDB.

Continue reading

Let your library design blosum

During the lead optimisation stage of the drug discovery pipeline, we might wish to make mutations to an initially identified binding antibody to improve properties such as developability, immunogenicity, and affinity.

There are many ways we could go about suggesting these mutations including using Large Language Models e.g. ESM and AbLang, or Inverse Folding methods e.g. ProteinMPNN and AntiFold. However, some of our recent work (soon to be pre-printed) has shown that classical non-Machine Learning approaches, such as BLOSUM, could also be worth considering at this stage.

Continue reading

Converting pandas DataFrames into Publication-Ready Tables

Analysing, comparing and communicating the predictive performance of machine learning models is a crucial component of any empirical research effort. Pandas, a staple in the Python data analysis stack, not only helps with the data wrangling itself, but also provides efficient solutions for data presentation. Two of its lesser-known yet incredibly useful features are df.to_markdown() and df.to_latex(), which allow for a seamless transition from DataFrames to publication-ready tables. Here’s how you can use them!

Continue reading

Deploying a Flask app part II: using an Apache reverse proxy

I recently wrote about serving a Flask web application on localhost using gunicorn. This is sufficient to get an app up and running locally using a production-ready WSGI server, but we still need to add a HTTP proxy server in front to securely handle HTTP requests coming from external clients. Here we’ll cover configuring a simple reverse proxy using the Apache web server, though of course you could do the same with another HTTP server such as nginx.

Continue reading

Understanding GPU parallelization in deep learning

Deep learning has proven to be the season’s favourite for biology: every other week, an interesting biological problem is solved by clever application of neural networks. Yet, as more challenges get cracked, modern research shifts more and more in the direction of larger models — meaning that increasing computational resources are required for training. Unsurprisingly, NVIDIA, the main manufacturer of GPUs, experienced a significant jump in their stock price earlier this year.

Access to compute is not enough to train good neural networks. As soon as multiple cards enter into play, researchers need to use a completely different paradigm where data and model weights are distributed across different devices — and sometimes even different computers. Though these tools start to be crucial for successful computational biology research, they are generally unknown to researchers. Hence, in this blogpost, I would like to provide a really brief introduction to multi-GPU training.

Continue reading

Deploying a Flask app part I: the gunicorn WSGI server

Last year I wrote a post about deploying Flask apps with Apache/mod_wsgi when your app’s dependencies are installed in a conda environment. The year before, in the dark times, I wrote a post about the black magic invocations required to get multiple apps running stably using mod_wsgi. I’ve since moved away from mod_wsgi entirely and switched to running Flask apps from containers using the gunicorn WSGI server behind an Apache reverse proxy, which has made life immeasurably easier. In this post we’ll cover running a Flask app on localhost using gunicorn; in Part II we’ll run our app as a service using Singularity and deploy it to production using Apache as a HTTP proxy server.

Continue reading