Category Archives: Code

NVIDIA Reimagines CUDA for Python Developers

According to GitHub’s Open Source Survey, Python has officially become the world’s most popular programming language in 2024 – ultimately surpassing JavaScript. Due to its exceptional popularity, NVIDIA announced Python support for its CUDA toolkit at last year’s GTC conference, marking a major leap in the accessibility of GPU computing. With the latest update (https://nvidia.github.io/cuda-python/latest/) and for the first time, developers can write Python code that runs directly on NVIDIA GPUs without the need for intermediate C or C++ code.

Historically tied to C and C++, CUDA has found its way into Python code through third-party wrappers and libraries. Now, the arrival of native support means a smoother, more intuitive experience.

This paradigm shift opens the door for millions of Python programmers – including our scientific community – to build powerful AI and scientific tools without having to switch languages or learn legacy syntax.

Continue reading

Debugging code for science: Fantastic Bugs and Where to Find Them.

The simulation results make no sense … My proteins are moving through walls and this dihedral angle is negative; my neural network won’t learn anything, I’ve tried for days to install this software and I still get an error.

Feel familiar? Welcome to scientific programming. Bugs aren’t just annoying roadblocks – they’re mysterious phenomena that make you question your understanding of reality itself. If you’ve ever found yourself debugging scientific code, you know it’s a different beast compared to traditional software engineering. In the commercial software world, a bug might mean a button doesn’t work or data isn’t saved correctly. In scientific computing, a bug might mean your climate model predicts an ice age next Tuesday, or your protein folding algorithm creates molecular structures that couldn’t possibly exist in our universe (cough).

Continue reading

GUI Science

There comes a point in every software-inclined lab based grad student’s life, where they think: now is the time to write a GUI for my software, to make it fast, easy to use, generalised so that others will use it too, the new paradigm for how to do research, etc. etc.

Of course such delusions of grandeur are rarely indulged, but when executed they certainly can produce useful outputs, as a well designed (or even, designed) GUI can improve an experimentalist’s life profoundly by simplifying, automating and standardising data acquisition, and by reducing the time to see results, allowing for shorter iteration cycles (this is known in engineering as “Design, Build, Test, Learn” cycle, in software it’s called “Coding”).

Having written a few GUIs in my time, I thought it might be helpful to share some experience I have, though it is by no means broad.

Continue reading

Combining Multiple Comparisons Similarity plots for statistical tests

Following on from my previous blopig post, Garrett gave the very helpful suggestion of combining Multiple Comparisons Similarity (MCSim) plots to reduce information redundancy. For example, this an MCSim plot from my previous blog post:

This plot shows effect sizes from a statistical test (specifically Tukey HSD) between mean absolute error (MAE) scores for different molecular featurization methods on a benchmark dataset. Red shows that the method on the y-axis has a greater average MAE score than the method on the x-axis; blue shows the inverse. There is redundancy in this plot, as the same information is displayed in both the upper and lower triangles. Instead, we could plot both the effect size and the p-values from a test on the same MCSim.

Continue reading

Geometric Deep Learning meets Forces & Equilibrium

Introduction

Graphs provide a powerful mathematical framework for modelling complex systems, from molecular structures to social networks. In many physical and geometric problems, nodes represent particles, and edges encode interactions, often acting like springs. This perspective aligns naturally with Geometric Deep Learning, where learning algorithms leverage graph structures to capture spatial and relational patterns.

Understanding energy functions and the forces derived from them is fundamental to modelling such systems. In physics and computational chemistry, harmonic potentials, which penalise deviations from equilibrium positions, are widely used to describe elastic networks, protein structures, and even diffusion processes. The Laplacian matrix plays a key role in these formulations, linking energy minimisation to force computations in a clean and computationally efficient way.

By formalising these interactions using matrix notation, we gain not only a compact representation but also a foundation for more advanced techniques such as Langevin dynamics, normal mode analysis, and graph-based neural networks for physical simulations.

Continue reading

The Good (and limitations) of using a Local CoPilot with Ollama

Interactive code editors have been around for a while now, and tools like GitHub Copilot have woven their way into most development pipelines, and for good reason. They’re easy to use, exceptionally helpful (at certain tasks), and have undeniably made life as a developer smoother. Recently, I decided to switch away from relying on GitHub Copilot in favour of a local model for a few key reasons. While I don’t use it all the time, it has proven to be a useful option in many situations. In this blog post, I’ll go over why I made the switch, how I set it up, and share a bit about my experience so far.

Continue reading

Narrowing the gap between machine learning scoring functions and free energy perturbation using augmented data

I’m delighted to report our collaboration (Ísak Valsson, Matthew Warren, Aniket Magarkar, Phil Biggin, & Charlotte Deane), on “Narrowing the gap between machine learning scoring functions and free energy perturbation using augmented data”, has been published in Nature’s Communications Chemistry (https://doi.org/10.1038/s42004-025-01428-y).


During his MSc dissertation project in the Department of Statistics, University of Oxford, OPIG member Ísak Valsson developed an attention-based GNN to predict protein-ligand binding affinity called “AEV-PLIG”. It featurizes a ligand’s atoms using Atomic Environment Vectors to describe the Protein-Ligand Interactions found in a 3D protein-ligand complex. AEV-PLIG is free and open source (BSD 3-Clause), available from GitHub at https://github.com/oxpig/AEV-PLIG, and forked at https://github.com/bigginlab/AEV-PLIG.

Continue reading

LLM Coding Tools – An Overview

We’ve come a long way since GitHub Copilot first showed us what AI-assisted coding could look like. These days, there’s a whole ecosystem of LLM coding tools out there, each with their own strengths and approaches. In this blog, I’ll give you a quick overview to help you figure out which one might work best for your workflow.

Level 1: Interactive Code Assistance

Continue reading

Molecule Networks: data visualization using PyVis

Over the past few years I have explored different data visualization strategies with the goal of rapidly communicating information to medicinal chemists. I have recently fallen in love with “molecule networks” as an intuitive and interactive data visualization strategy. This blog gives a brief tutorial on how to start generating your own molecule networks.

Continue reading

Making pretty, interactive graphs the simple way – Use Plotly.

Using an ESP8266 and some DS18B20 one-wire temperature sensors, I have been automatically recording temperature data from various parts of my pond, to see how it fluctuated with air temperature, depth and filter configuration.

Despite the help I was receiving from the feline fish monitor, I was getting a bit irked at the quality of the graphs I was getting using matplotlib.

Matplotlib has been around since 2003, more than 20 years now. It’s arguably the defacto method of producing graphs in python and it’s not going away. However, it’s also a pain to use and by default produces some quite ugly plots unless you put in the mileage. In fact, when attempting to quickly explore data, Michael L. Waskom’s frustrations with matplotlib were directly related to the production of the seaborn library. “By producing complete graphics from a single function call with minimal
arguments, seaborn facilitates rapid prototyping and exploratory data analysis.”

Seaborn makes use of matplotlib and integrates tightly with pandas provide a neat wrapper for matplotlib functions, allowing you to avoid a lot of the data herding needed to view a graph.

You may think “OK, so seaborn finally tames matplotlib, why should I use anything else?” In short, interactivity. Seaborn and Matplotlib may produce graphs, but a graph alone doesn’t really let you explore the data. If you look at a graph you’re limited to the scale the author thought made sense, you can’t zoom in or out and if one line is behind another, you’re kind of stuck.

Where plotly really shines is with just two lines you can generate your figure and then either save it as the image below, or as an interactive HTML graph such as this.

Continue reading