Author Archives: Sam Money-Kyrle

Visualising and validating differences between machine learning models on small benchmark datasets

Introduction
Author

Sam Money-Kyrle

Introduction

An epidemic is sweeping through cheminformatics (and machine learning) research: ugly results tables. These tables are typically bloated with metrics (such as regression and classification metrics next to each other), vastly differing tasks, erratic bold text, and many models. As a consequence, results become difficult to analyse and interpret. Additionally, it is rare to see convincing evidence, such as statistical tests, for whether one model is ‘better’ than another (something Pat Walters has previously discussed). Tables are a practical way to present results and are appropriate in many cases; however, this practicality should not come at the cost of clarity.

The terror of ugly tables extends to benchmark leaderboards, such as Therapeutic Data Commons (TDC). These leaderboard tables do not show:

  1. whether differences in metrics between methods are statistically significant,
  2. whether methods use ensembles or single models,
  3. whether methods use classical (such as Morgan fingerprints) or learned (such as Graph Neural Networks) representations,
  4. whether methods are pre-trained or not,
  5. whether pre-trained models are supervised, self-supervised, or both,
  6. the data and tasks that pre-trained models are pre-trained on.

This lack of context makes meaningful comparisons between approaches challenging, obscuring whether performance discrepancies are due to variance, ensembling, overfitting, exposure to more data, or novelties in model architecture and molecular featurisation. Confirming the statistical significance of performance differences (under consistent experimental conditions!) is crucial in constructing a more lucid picture of machine learning in drug discovery. Using figures to share results in a clear, non-tabular format would also help.

Statistical validation is particularly relevant in domains with small datasets, such as drug discovery, as the small number of test samples leads to high variance in performance between different splits. Recent work by Ash et al. (2024) sought to alleviate the lack of statistical validation in cheminformatics by sharing a helpful set of guidelines for researchers. Here, we explore implementing some of the methods they suggest (plus some others) in Python.

Continue reading

Sort and Slice Tutorial – An alternative to extended connectivity fingerprints

Using JAX and Haiku to build a Graph Neural Network


JAX

Last year, I had an opportunity to delve into the world of JAX whilst working at InstaDeep. My first blopig post seems like an ideal time to share some of that knowledge. JAX is an experimental Python library created by Google’s DeepMind for applying accelerated differentiation. JAX can be used to differentiate functions written in NumPy or native Python, just-in-time compile and execute functions on GPUs and TPUs with XLA, and mini-batch repetitious functions with vectorization. Collectively, these qualities place JAX as an ideal candidate for accelerated deep learning research [1].

JAX is inspired by the NumPy API, making usage very familiar for any Python user who has already worked with NumPy [2]. However, unlike NumPy, JAX arrays are immutable; once they are assigned in memory they cannot be changed. As such, JAX includes specific syntax for index manipulation. In the code below, we create a JAX array and change the 1^{st} element to a 4:

Continue reading