Deep learning (DL) methods in structural modelling are outcompeting force fields because they overcome the two main limitations to force fields methods – the prohibitively large search space for large systems and the limited accuracy of the description of the physics [4].
However, the two methods are also compatible. DL methods are helping to close the gap between the applications of force fields and ab initio methods [3]. The advantage of DL-based force fields is that the functional form does not have to be specified explicitly and much more accurate. Say goodbye to the 12-6 potential function.
In principle DL-based force fields can be applied anywhere where regular force fields have been applied, for example conformation generation [2]. The flip-side of DL-based methods commonly is poor generalization but it seems that force fields, when properly trained, generalize well. ANI trained on molecules with up to 8 heavy atoms is able to generalize to molecules with up to 54 atoms [1]. Excitingly for my research, ANI-2 [2] can replace UFF or MMFF as the energy minimization step for conformation generation in RDKit [5].
So let’s use Auto3D [2] to generated low energy conformations for the four molecules caffeine, Ibuprofen, an experimental hybrid peptide, and Imatinib:
CN1C=NC2=C1C(=O)N(C(=O)N2C)C CFF
CC(C)Cc1ccc(cc1)C(C)C(O)=O IBP
Cc1ccccc1CNC(=O)[C@@H]2C(SCN2C(=O)[C@H]([C@H](Cc3ccccc3)NC(=O)c4cccc(c4C)O)O)(C)C JE2
Cc1ccc(cc1Nc2nccc(n2)c3cccnc3)NC(=O)c4ccc(cc4)CN5CCN(CC5)C STI
Continue reading →