Author Archives: Garrett

Reproducible publishing

I’m a big fan of Jupyter Notebooks. They’re a great way to document and explain code, and even better, you can run this code when connected to an appropriate kernel.

What if you want to work on something larger than a notebook? Say a chapter or even a whole book, with Python, R, Observable JS, or Julia code? Enter Quarto. You can combine Jupyter notebooks and/or plain text markdown to publish production quality articles, presentations, dashboards, website, blogs and books in HTML, PDF, Microsoft Word, ePub, and other formats. Quarto can also connect to publishing platforms like Posit Connect, Confluence Cloud, and others.

Continue reading

OPIGmas, 2023

Our annual, end-of-Michaelmas OPIG celebrations took place this at the start of December in the MCR (Middle Common Room) at Lady Margaret Hall.

OPIGmas is a much-anticipated combination of pot luck, Secret Santa, and party games.

Perhaps Jay’s megaphone topped the list of gag gifts…

Continue reading

Conference feedback — with a difference

At OPIG Group Meetings, it’s customary to give “Conference Feedback” whenever any of us has recently attended a conference. Typically, people highlight the most interesting talks—either to them or others in the group.

Having just returned from the 6th RSC-BMCS / RSC-CICAG AI in Chemistry Symposium, it was my turn last week. But instead of the usual perspective—of an attendee—I spoke briefly about how to organize a conference.

Continue reading

A simple criterion can conceal a multitude of chemical and structural sins

We’ve been investigating deep learning-based protein-ligand docking methods which often claim to be able to generate ligand binding modes within 2Å RMSD of the experimental one. We found, however, this simple criterion can conceal a multitude of chemical and structural sins…

DeepDock attempted to generate the ligand binding mode from PDB ID 1t9b
(light blue carbons, left), but gave pretzeled rings instead (white carbons, right).

Continue reading

9th Joint Sheffield Conference on Cheminformatics

Over the next few days, researchers from around the world will be gathering in Sheffield for the 9th Joint Sheffield Conference on Cheminformatics. As one of the organizers (wearing my Molecular Graphics and Modeling Society ‘hat’), I can say we have an exciting array of speakers and sessions:

  • De Novo Design
  • Open Science
  • Chemical Space
  • Physics-based Modelling
  • Machine Learning
  • Property Prediction
  • Virtual Screening
  • Case Studies
  • Molecular Representations

It has traditionally taken place every three years, but despite the global pandemic it is returning this year, once again in person in the excellent conference facilities at The Edge. You can download the full programme in iCal format, and here is the conference calendar:

Continue reading

Happy 10th Birthday, Blopig!

OPIG recently celebrated its 20th year; and on 10 January 2023 I gave a talk just a day before the 10th anniversary of BLOPIG’s first blog post. It’s worth reflecting on what’s stayed the same and what’s changed since then.

Continue reading

How to build a Python dictionary of residues for each molecule in PyMOL

Sometimes it can be handy to work with multiple structures in PyMOL using Python.

Here’s a snippet of code you might find useful: we iterate over all the α-carbon atoms in a protein and append to a list tuples such as (‘GLY’, 1). The dictionary, ‘reslist’, returns a list of residue names and indices for each molecule, where the key is a string containing the name of the molecule.

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
from pymol import cmd
# Create a list of all the objects, called 'mpls':
mols = cmd.get_object_list('*')
# Create an empty dictionary that will return a list of residues
# given the name of the molecule object
reslist = {}
# Set the dictionaries to be empty lists
for m in mols: reslist[m] = []
# Use PyMOL's iterate command to go over every α-Carbon and append
# a tuple consisting of the each residue's residue name ('resn') and
# residue index ('resi '):
for m in mols: cmd.iterate('%s and n. ca'%m, 'reslist["%s"].append((resn,int(resi)))'%m)
from pymol import cmd # Create a list of all the objects, called 'mpls': mols = cmd.get_object_list('*') # Create an empty dictionary that will return a list of residues # given the name of the molecule object reslist = {} # Set the dictionaries to be empty lists for m in mols: reslist[m] = [] # Use PyMOL's iterate command to go over every α-Carbon and append # a tuple consisting of the each residue's residue name ('resn') and # residue index ('resi '): for m in mols: cmd.iterate('%s and n. ca'%m, 'reslist["%s"].append((resn,int(resi)))'%m)
from pymol import cmd

# Create a list of all the objects, called 'mpls':
mols = cmd.get_object_list('*')

# Create an empty dictionary that will return a list of residues
# given the name of the molecule object
reslist = {}

# Set the dictionaries to be empty lists
for m in mols:  reslist[m] = []

# Use PyMOL's iterate command to go over every α-Carbon and append 
# a tuple consisting of the each residue's residue name ('resn') and
# residue index ('resi '):
for m in mols:  cmd.iterate('%s and n. ca'%m, 'reslist["%s"].append((resn,int(resi)))'%m)

This script assumes you only have protein molecules loaded, and ignores things like chain ID and insertion codes.

Once you have your list of residues, you can use it with the cmd.align command, e.g., to align a particular residue to a reference structure.

5th Artificial Intelligence in Chemistry Symposium

The lineup for the Royal Society of Chemistry’s 5th “Artificial Intelligence in Chemistry” Symposium (Thursday-Friday, 1st-2nd September 2022) is now complete for both oral and poster presentations. It really is a fantastic selection of topics and speakers and it is clear this event is now a highlight of the scientific calendar. Our very own Prof. Charlotte M. Deane, MBE will be giving a keynote.

5th RSC-BMCS/RSC-CICAG Airtificial Intelligence in Chemistry Symposium, 1st-2nd September, Churchill College, Cambridge + Zoom broadcast.

It marks a return to in-person meetings: it will be held at Churchill College, Cambridge, with a conference dinner at Trinity Hall.

More details are here: https://www.rscbmcs.org/events/aichem22/.

Registration for in person attendance is open until Monday 29th August 17:00 (BST).

It is also possible to register for virtual attendance; the meeting will be broadcast on Zoom.

Congratulations to Prof. Charlotte Deane, MBE

A while back, we read about the pivotal role Prof. Deane played at UKRI during the height of the COVID-19 pandemic.

Image of Prof. Charlotte M. Deane.
Prof. Charlotte M. Deane

Her Majesty the Queen’s Birthday Honours list, released ahead of her Platinum Jubilee, included Prof. Charlotte M. Deane, who was awarded an MBE (Member of the Most Excellent Order of the British Empire):

Professor Charlotte Mary Deane. Deputy Executive Chair, UK Research and Innovation. For services to Covid-19 Research. (Oxford, Oxfordshire)

The Queen’s Birthday Honours 2022

Congratulations, Charlotte!

Better Models Through Molecular Standardization

“Cheminformatics is hard.”

— Paul Finn

I would add: “Chemistry is nuanced”… Just as there are many different ways of drawing the same molecule, SMILES is flexible enough to allow us to write the same molecule in different ways. While canonical SMILES can resolve this problem, we sometimes have different problem. In some situations, e.g., in machine learning, we need to map all these variants back to the same molecule. We also need to make sure we clean up our input molecules and eliminate invalid or incomplete structures.

Different Versions of the Same Molecule: Salt, Neutral or Charged?

Sometimes, a chemical supplier or compound vendor provides a salt of the compound, e.g., sodium acetate, but all we care about is the organic anion, i.e., the acetate. Very often, our models are built on the assumption we have only one molecule as input—but a salt will appear as two molecules (the sodium ion and the acetate ion). We might also have been given just the negatively-charged acetate instead of the neutral acetic acid.

Tautomers

Another important chemical phenomenon exists where apparently different molecules with identical heavy atoms and a nearby hydrogen can be easily interconverted: tautomers. By moving just one hydrogen atom and exchanging adjacent bond orders, the molecule can convert from one form to another. Usually, one tautomeric form is most stable. Warfarin, a blood-thinning drug, can exist in solution in 40 distinct tautomeric forms. A famous example is keto-enol tautomerism: for example, ethenol (not ethanol) can interconvert with the ketone form. When one form is more stable than the other form(s), we need to make sure we convert the less stable form(s) into the most stable form. Ethenol, a.k.a. vinyl alcohol, (SMILES: ‘C=CO[H]’), will be more stable when it is in the ketone form (SMILES: ‘CC(=O)([H])’):

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
from IPython.display import SVG # to use Scalar Vector Graphics (SVG) not bitmaps, for cleaner lines
import rdkit
from rdkit import Chem
from rdkit.Chem import AllChem
from rdkit.Chem import Draw # to draw molecules
from rdkit.Chem.Draw import IPythonConsole # to draw inline in iPython
from rdkit.Chem import rdDepictor # to generate 2D depictions of molecules
from rdkit.Chem.Draw import rdMolDraw2D # to draw 2D molecules using vectors
AllChem.ReactionFromSmarts('[C:1]-[C:2](-[O:3]-[H:4])>>[C:1]-[C:2](=[O:3])(-[H:4])')
from IPython.display import SVG # to use Scalar Vector Graphics (SVG) not bitmaps, for cleaner lines import rdkit from rdkit import Chem from rdkit.Chem import AllChem from rdkit.Chem import Draw # to draw molecules from rdkit.Chem.Draw import IPythonConsole # to draw inline in iPython from rdkit.Chem import rdDepictor # to generate 2D depictions of molecules from rdkit.Chem.Draw import rdMolDraw2D # to draw 2D molecules using vectors AllChem.ReactionFromSmarts('[C:1]-[C:2](-[O:3]-[H:4])>>[C:1]-[C:2](=[O:3])(-[H:4])')
from IPython.display import SVG # to use Scalar Vector Graphics (SVG) not bitmaps, for cleaner lines

import rdkit
from rdkit import Chem
from rdkit.Chem import AllChem
from rdkit.Chem import Draw # to draw molecules
from rdkit.Chem.Draw import IPythonConsole # to draw inline in iPython
from rdkit.Chem import rdDepictor  # to generate 2D depictions of molecules
from rdkit.Chem.Draw import rdMolDraw2D # to draw 2D molecules using vectors

AllChem.ReactionFromSmarts('[C:1]-[C:2](-[O:3]-[H:4])>>[C:1]-[C:2](=[O:3])(-[H:4])')
Continue reading