Hi everyone,
My blogpost this time around is a list of conferences popular with OPIGlets. You are highly likely to see at least one of us attending or presenting at these meetings! I’ve tried to make it as exhaustive as possible (with thanks to Fergus Imrie!), listing conferences in upcoming chronological order.
(Most descriptions are slightly modified snippets taken from the official websites.)
Monthly Archives: September 2019
Three things to help you get started on Bayesian Optimisation
In this blog post I will share with you the materials that I found most useful when I started doing some Bayesian Optimisation in my research. Bear in mind, I am a Chemist by training, so I approached this topic from a non-mathematical background (my eyes have to be persuaded to look at mathematical equations). Out of all the materials I have come across, I found these to be the most accessible.
Continue readingOpenMM – easy to learn, highly flexible molecular dynamics in Python
When I came to OPIG this past March I realized I had a novel opportunity – there was no one to tell me which molecular dynamics (MD) program I had to use! Usually, researchers do not have much choice in the matter due to a number of practical concerns. Conflicts between input and output file formats, forces, velocities, and basically everything else between MD suites make having multiple programs flying around tenuous at best if you want group members to be able to help one another. After weighing my options, I settled on OpenMM – and so far I am very happy with the decision.
Learning dynamical information from static protein and sequencing data
I would like to advertise the research from Pearce et al. (https://doi.org/10.1101/401067) whose talk I attended at ISMB 2019. The talk was titled ‘Learning dynamical information from static protein and sequencing data’. I got interested in it as my field of research is structural biology which deals with dynamics systems, e.g. proteins, but data is often static, e.g. structures from X-ray crystallography. They presented a general protocol to infer transition rates between states in a dynamical system that can be represented with an energy landscape.
Continue reading