The idea of bacterial superpowers is perhaps most associated with superbugs: the terrifying, drug-resistant bacterial strains that appear ever more frequently in news reports. While the notion of a world where antibiotics no longer work is chilling, this blog post will focus on a more positive aspect of the bacterial domain.
One of the more “niche” bacterial superpowers is magnetotaxis: the ability of certain bacteria to align their motion to the Earth’s magnetic field. This phenomenon was first reported in 1963 by Salvatore Bellini in the University of Pavia. While observing bog sediment under the microscope, he noticed a set of bacteria orienting themselves in the same direction: towards the Earth’s magnetic North pole. He dubbed these gram-negative bacteria “magnetosensitive”, or “batteri magnetosensibili”, but the discovery went largely unnoticed by the international scientific community [1]. The name “magnetotactic bacteria” (MTB) was introduced about a decade later, when Richard Blakemore reported the same phenomenon for bacteria found in marine sediments [2]. Through transmission electron microscopy, Blakemore was also able to capture the cellular feature that gives MTBs their unusual abilities: a rod-like structure of membrane-bound, iron-rich inorganic crystals, called magnetosomes. Later it was revealed that this structure is supported by a dedicated cytoskeletal system, which keeps it rod-shaped and prevents the aggregation of magnetosomes [4]. Magnetotaxis then results from the combination of the passive alignment of the cell to the Earth’s magnetic field, and flagellar motion. Continue reading