Allostery is the process by which action at one site, such as the binding of an effector molecule, causes a functional effect at a distant site. Allosteric mechanisms are important for the regulation of cellular processes, altering the activity of a protein, or the whole biosynthetic pathway. Triggers for allosteric action include binding of small molecules, protein-protein interaction, phosphorylation events and modification of disulphide bonds. These triggers can lead to changes in accessibility of the active site, through large or small motions, such as hinge motion between two domains, or the motion of a single side chain.

Figure 1 from [1]: Rearrangement of a residue–residue interaction in phosphofructokinase. Left panel: interaction between E241 and H160 of chain A in the inactive state; right: this interaction in the active state. Red circles mark six atoms unique to the residue–residue interface in the I state, green circles mark four atoms unique to the A state, and yellow circles mark three atoms present in both states. In these two residues, there are a total of 19 atoms, so the rearrangement factor R(i,j) = max(6, 4)/19 = 0.32

Adaption of Figure 2 from [1]. Contact rearrangement network for phosphofructokinase. Circles in each graph represent protein residues, and red and green squares represent substrate and effector molecules, respectively. Lines connect pairs of residues with R(i,j) ≥ 0.3 and residues in the graph with any ligands which are adjacent (within 5.0 Å) in either structure. All connected components which include at least one substrate or effector molecule are shown.

Figure 1 from [3]. (a) X-ray electron density map contoured at 1σ (blue mesh) and 0.3σ (cyan mesh) of cyclophilin A (CYPA) fit with discrete alternative conformations using qFit. Alternative conformations are colored red, orange or yellow, with hydrogen atoms added in green. (b) Visualizing a pathway in CYPA: atoms involved in clashes are shown in spheres scaled to van der Waals radii, and clashes between atoms are highlighted by dotted lines. This pathway originates with the OG atom of Ser99 conformation A (99A) and the CE1 atom of Phe113 conformation B (113B), which clash to 0.8 of their summed van der Waals radii. The pathway progresses from Phe113 to Gln63, and after the movement of Met61 to conformation B introduces no new clashes, the pathway is terminated. A 90° rotation of the final panel is shown to highlight how the final move of Met61 relieves the clash with Gln63. (c) Networks identified by CONTACT are displayed as nodes connected by edges representing contacts that clash and are relieved by alternative conformations. The node number represents the sequence number of the residue. Line thickness between a pair of nodes represents the number of pathways that the corresponding residues are part of. The pathway in b forms part of the red contact network in CYPA. (d) The six contact networks comprising 29% of residues are mapped on the three-dimensional structure of CYPA.
These techniques show two different ways to locate and annotate local conformational changes in a protein, and determine how they may be linked to one another. Considering whether these, and similar techniques highlight the same allosteric networks within proteins will be important in the integration of many data types and sources to inform the detection of allostery. Furthermore, the ability to compare networks, for example finding common motifs, will be important as the development of techniques such as fragment based drug discovery present crystal structures with many differently bound fragments.
[1] Daily, M. D., Upadhyaya, T. J., & Gray, J. J. (2008). Contact rearrangements form coupled networks from local motions in allosteric proteins. Proteins: Structure, Function and Genetics. http://doi.org/10.1002/prot.21800
[2] Daily, M. D., & Gray, J. J. (2009). Allosteric communication occurs via networks of tertiary and quaternary motions in proteins. PLoS Computational Biology. http://doi.org/10.1371/journal.pcbi.1000293
[3] van den Bedem, H., Bhabha, G., Yang, K., Wright, P. E., & Fraser, J. S. (2013). Automated identification of functional dynamic contact networks from X-ray crystallography. Nature Methods, 10(9), 896–902. http://doi.org/10.1038/nmeth.2592